PAKISTAN WATER AND POWER DEVELOPMENT AUTHORITY

DASU HYDROPOWER PROJECT

ENVIRONMENTAL MANAGEMENT ACTION PLAN Volume 2: ENVIRONMENTAL IMPACT ASSESSMENT

ANNEXURES

General Manager (Hydro) Planning, WAPDA, Sunny View, Lahore, Pakistan

ANNEXES

List of Annexes

Annex 1.1: No Objection Certificate for Dasu Hydropower Project by KP EPA

Annex 2.1: National Environmental Quality Standards (NEQS 2000, 2009 and 2010)

Annex 3.1: Reservoir Area Map (Satellite Imagery)

Annex 4.1: Water Quality Results during Detailed Design and Feasibility Studies

Annex 4.2: Biological Information of Native Fish Species

Annex 4.3: Inventory of Vegetation in the Project Area

Annex 4.4: Data on Passerine and Migratory Birds in the Project Area

Annex 4.5: Traffic data along KKH and Access Roads

Annex 5.1: Alternatives for Waterways (Intake and Tailrace Canals)

Annex 6.1: Methodology for calculations of GHG emissions from DHP

Annex 7.1: Emission Factors for Construction Equipment

Annex 7.2: Seismic Hazard Assessment

Annex 7.3: Reservoir Induced Landslides

Annex 7.4: Dam Safety and Its Monitoring

Annex 8.1: Eligibility and Entitlement Matrix

Annex 8.2: Land Acquisition and Resettlement Budget

Annex 9.1: Terms of Reference for EU-DHC Staff

Annex 9.2: Detailed Cost Estimates of EMP

Annex 9.3: Environmental Code of Practices

Annex 10.1: Machinery Used in Construction of KKH

Annex 12.1: List of Participants of Community Consultation in 34 Villages

Annex 12.2: Notable Members of the Committee

Annex 12.3: Executive Committee of Affectees of Dasu

Annex 12.4: Participants of Jirga in March 2012 and in September 2012

Annex 12.5: Attendance List of Peshawar

- Annex 12.6: Attendance List of Lahore
- Annex 12.7: Attendance List of Karachi

Annex 12.8: Attendance List of Islamabad

Annex 12.9: Copies of Power Points and Discussion Point

Annex 13.1: Hydropower Sustainability Assessment Protocols – The Case of DHP

Annex – 1.1

NO OBJECTION CERTIFICATE (NOC) – ENVIRONMENTAL PROTECTION AGENCY – EPA

Environmental Protection Agency Environment Department Govt. of Khyber Pakhtunkhwa Protest Ganuter Press igner 927 - 0-6 No. EPA/EIA/Dasu-Hydro-P/468 24-11- Tall Date. 73-11-2011 CE (C) HP DY, NO Haji M. Fareog Ahmad, Project Director, Dasu Hydropower Project, WAPDA. D-Block, Sunny View, Lahore. BMISSION OF EIA REPORT OF DASU HYDROPOWER PROJECT FOR NOC 1 am directed to enclose herewith Legal Environmental Approval/ Decision Note on EIA report of "Dasu Hydro Power Project" at District Kohistan for your information and further implementation, please. P put up to GROCH) P Fro information Dector. dept: 3 (22414/20V 598 S 10 Sec. 1 1rd Floor, SDU Building, Khyber Road, Peshawar Cantt Telephone: 92 (91) 9210263, Fax: 92 (91) 9210280

SCHEDULE-VI

Decision on EIA

1. Name, address of proponent:

Haji Muhammad Faroog Ahmad Project Director Dasu HPP WAPDA, D-Block, Sunny View Lahore Tel # 042-99202721-22 Fax # 042-99202722

Description of project.

The Dasu Hydro Power is proposed to be located on river Indus about 07 km upstream of Dasu Town and 74 km downstream of Diamer Basha Dam. The project has installed capacity of 4320 MW and will generate 21334 GWh per annum. The project will require the resettlement of houses.

Location of project.

k

i.

The project is located in District Kohistan.

Date of filing of EIA.

24/05/2011 (Ref: EPA Diary No.529)

- After careful review, the Environmental Protection Agency, Govt. of Khyber Pakhtunkhwa has decided to accord approval of the Environmental Impact Assessment for Dasu Hydro Power Project (4320 MW) District Kohistan, for construction phase, in line with the guidelines issued by Pak. EPA and IEE/EIA Regulations, 2000, subject to the following terms & conditions:
 - a) The proponent will adopt all precautionary and mitigation measures identified in EIA Report as well as any un-anticipated impacts during the construction and operation phase of project. The mitigation measures proposed in the EIA report are considered as "commitments" and institutional arrangement for its implementation shall be finalized before the start of construction so that proposed mechanism of environment protection should work in time.

Page 1 of 4

- b) Safety zone/adequate engineering measures should be provided to overcome fears of the residents regarding effect of pond to their houses.
- c) Land and houses should be acquired through Revenue Department of Khyber Pakhtunkhwa as per land acquisition policy and the compensation should be made to the affectees as per government policy before starting the construction activities. Current land use such as barren or agriculture land should be taken into consideration.
- d) All conflicting issues regarding compensation etc to be settled before executing or commencing of the project activities and a certificate in this regard should be submitted to this Agency.
- e) Arrangements for compensation should be made through National Bank of Pakistan, District Govt. /Revenue Department.
- f) Submergence of 40 km of Kara Kuram Highway should be reconstructed in another suitable place.
- g) The exact number, type and ownership of trees be carried out and the same may be submitted to this Agency before the physical work started.
- Afforestation programme should be planned and be submitted to this Agency.
- Non-technical jobs should be provided to local community. Employment record for all positions shall be provided to EPA-Khyber Pakhtunkhwa and priority should also be given to local, in technical jobs.
- j) Separate NOC/Legal Approval is required for batching/crushing plant and construction of Town/Colony under PEPA, 1997.
 - k) No extension would be permitted in the future in the existing hydropower project without prior approval of the EPA/Govt of Khyber Pakhtunkhwa.

Page 2 of 4

- C.
- The project management may consider the possibility of implementation of a social development programme in the area (health, education, communication etc) in consultation with local community.
- m) The proponent shall provide the copy of this approval and EIA report to the contractor for information and compliance.
- n) The proponent should ensure to avoid dumping of debris into down slope. A prior area should be identified for disposal of debris and be stabilized by proper plantation, bio engineering and engineering bechniques. The same should be provided to this Agency.
- o) In case, the blasting is inevitable, the controlled techniques, in accordance with Pakistan Explosive Act should be adopted in sliding and perspective sliding prone areas.
- p) The proponent should ensure the strict and efficient health and safety, measures for the protection of workers and passers-by backed by a comprehensive emergency response plan.
- q) The proponent shall replace all public utilities, such as water supply pipes, power / phone lines and other infrastructures like masjids, schools, graveyards, hospitals etc to be lost by the execution of the project. If it is inevitable then alternative may be provided to the people of the area before construction with respective agencies under the intimation to Khyber Pakhtunkhwa-EPA.
- The proponent shall be liable for correctness and validity of the information supplied by the environmental consultant.
- The proponent shall be liable for compliance of Sections 13,14,17 and 18 of IEE/EIA Regulations, 2000, regarding approval, confirmation of compliance, entry, inspections and monitoring.
- j 8. This approval is accorded only for the installation/ construction phase of the project. The proponent will obtain approval for operation of the hydro power project in accordance with the Section 13 (2) (b) and Section 18 of the IEE/EIA Regulations, 2000.

Page 3 of 4

- Any change in the approved project shall be communicated to EPA, Khyber Pakhtunkhwa and shall be commenced after obtaining the approval.¹
- This approval shall be treated as null and void if all or any of the conditions mentioned above is/are not complied with.
- This approval does not absolve the proponent of the duty to obtain any other approval or clearance that may be required under any law in force.
- There is no legal case pending in the courts against the project.
- In exercise of the power under Section 12 of the Pakistan Environmental Protection Act, 1997, the undersigned is pleased to approve the EIA Report for construction phase of the project with above mentioned terms and conditions.

Dated: Peshawar 13 /1/ / 20 1/ Tracking/File.No.__EPA/EIA/Dasu-Hydro-P/ 448

DIRECTOR GENERAL EPA, Khyber Pakhtunkhwa. 3rd Floor, SDU Building, Khyber Road Peshawar Cantt.

Annex – 2.1

NATIONAL ENVIRONMENTAL QUALITY STANDARDS (NEQS 2000, 2009 and 2010)

Table1: NEQS for Municipal and Liquid Industrial Effluents^{1, 2}

(mg/l, unless otherwise defined)

No.	Parameter		Standards	
		Into Inland Waters	Into Sewage Treatment ⁵	Into Sea ⁽⁾
1.	Temperature increase ⁷	=<3°C	=<3°C	=<3°C
2.	pH value	6 to 9	6 to 9	6 to 9
3.	Five-day bio-chemical oxygen demand $(BOD)_5$ at 20°C ¹	80	250	80 ⁸
4.	Chemical oxygen demand (COD) ¹	150	400	400
5.	Total suspended solids (TSS)	200	400	200
6.	Total dissolved solids (TDS)	3,500	3,500	3,500
7.	Grease and oil	10	10	10
8.	Phenolic compounds (as phenol)	0.1	0.3	0.3
9.	Chlorides (as Cl')	1,000	1,000	SC ⁹
10.	Fluorides (as F')	10	10	10
11.	Cyanide total (as CN')	1.0	1.0	1.0
12.	Anionic detergents (as MBAS) ²	20	20	20
13.	Sulfates (SO ₄)	600	1,000	SC ⁹
14.	Sulfides (s')	1.0	1.0	1.0
15.	Ammonia (NH ₃)	40	40	40
16.	Pesticides ³	0.15	0.15	0.15
17.	Cadmium ⁴	0.1	0.1	0.1
18.	Chromium (trivalent and hexavalent) ⁴	1.0	1.0	1.0
19.	Copper ⁴	1.0	1.0	1.0
20.	Lead ⁴	0.5	0.5	0.5
21.	Mercury ⁴	0.01	0.01	0.01
22.	Selenium ⁴	0.5	0.5	0.5
23.	Nickel ⁴	1.0	1.0	1.0
24.	Silver ⁴	1.0	1.0	1.0
25.	Total toxic metals	2.0	2.0	2.0
26.	Zinc	5.0	5.0	5.0
27.	Arsenic ⁴	1.0	1.0	1.0
28.	Barium ⁴	1.5	1.5	1.5
29.	Iron	8.0	8.0	8.0
30.	Manganese	1.5	1.5	1.5
31.	Boron ⁴	6.0	6.0	6.0
32.	Chlorine	1.0	1.0	1.0

Explanations:

- 1. Assuming minimum dilution 1:10 discharge, lower ratio would attract progressively stringent standards to be determined by the Federal Environmental Protection Agency. By 1:10 dilution means, for example that for each one cubic meter of treated effluent, the recipient water body should have 10 cubic meter of water for dilution of this effluent.
- 2. Methylene Blue Active substances assuming surfactant as biodegradable
- 3. Pesticides include herbicides, fungicides, and insecticides
- 4. Subject to total toxic metals discharge should not exceed level given at S. No. 25
- 5. Applicable only when and where sewage treatment is operational and BOD = 80 mg/l is achieved by the sewage treatment system.
- 6. Provided discharge is not at shore and not within 10 miles of mangrove or other important estuaries.
- 7. The effluent should not result in temperature increase of more than 3°C at the edge of the zone where initial mixing and dilution take place in the receiving body. In case zone is not define, use 100 m from the point of discharge
- 8. ** The value for industry is 200 mg/l
- 9. *** Discharge concentration at or below sea concentration (SC)
- 10. Dilution of liquid effluents to bring them to the NEQS limiting values is not permissible through fresh water mixing with the effluent before discharging into the environment.
- 11. The concentration of pollutants in water being used will be subtracted from the effluent for calculating the NEQS limits.
- 12. Modified Benzene Alkyl Sulfate assuming surfacetant as biodegradable.

No.	Parameter	Source of Emission	Standards
1.	Smoke	Smoke opacity not to exceed	40% or 2 on Ringlemann Scale or equivalent smoke number
2.	Particulate matter ¹	(a) Boilers and furnaces:	
		i) Oil-fired	300
		ii) Coal-fired	500
		iii) Cement kilns	300
		(b) Grinding, crushing, clinker coolers and related processes, metallurgical processes, converters, blast furnaces and cupolas	500
3.	Hydrogen chloride	Any	400
4.	Chlorine	Any	150
5.	Hydrogen fluoride	Any	150
6.	Hydrogen sulfide	Any	10
7.	Sulfur oxides ^{2, 3}	Sulfuric acid/sulfonic acid plants	5,000
		Other plants except power plants operating on oil and coal	1,700
8.	Carbon monoxide	Any	800
9.	Lead	Any	50
10.	Mercury	Any	10
11.	Cadmium	Any	20
12.	Arsenic	Any	20
13.	Copper	Any	50
14.	Antimony	Any	20
15.	Zinc	Any	200
16.	Oxides of nitrogen ³	Nitric acid manufacturing unit	3,000
		Gas-fired	400
		Oil-fired	600
		Coal-fired	1,200

Table 2: I	NEQS for	Gaseous	Emissions
------------	----------	---------	-----------

1. Based on the assumption that the size of the particulate is 10 micron or more.

- 2. Based on 1 per cent sulfur content in fuel oil. Higher content of sulfur will cause standards to be pro-rated.
- 3. In respect of emissions of sulfur dioxide and nitrogen oxides, the power plants operating on oil and coal as fuel shall in addition to National Environmental Quality Standards (NEQS) special above, comply with the following standards.
- 4. Pakistan Standards for Sulfur Dioxide and Nitrogen Oxides for Power Plants Operating on Oil and Coal

Sulfur Dioxide Background Levels (mg/m ³)				Standards
			Criterion I	Criterion II
Background Air Quality (SO ₂ basis)	Annual Average	Maximum 24-Hour Interval	Max. SO ₂ Emissions (TPD)	Max. Allowable 1-Year Average Ground Level Increment to Ambient (mg/m ³)
Unpolluted	< 50	< 200	500	50
Moderately pollute	d ¹			
Low	50	200	500	50
High	100	400	100	10
Very polluted ²	> 100	> 400	100	10

Table 3: NEQS for Sulfur Dioxide

1. For intermediate values between 50 and 100 μ g/m³ linear interpretation should be used.

2. No project with sulfur dioxide emissions will be recommended.

Table 4: NEQS for Nitrogen Oxides

Annual arithmetic mean of ambient air concentrations of nitrogen $100 \ \mu g/m^3$ (0.05 ppm) oxides (expressed as NO₂) should not exceed

Maximum emission levels for stationary source discharges, before mixing with the atmosphere: For fuel fired steam generators

Liquid fossil fuel	130 ng/J of heat input
Solid fossil fuel	300 ng/J of heat input
Lignite fossil fuel	260 ng/J of heat input

Table 5: NEQS for Noise

S	Category of	Effective from	n Ist July, 2010	Effective from	n Ist July, 2012
No.	Area/Zone	Limit in dB(A) Leq*			
		Day time	Night time	Day time	Night time
1.	Residential are (A)	65	50	55	45
2.	Commercial are (B)	70	60	65	55
3.	Industrial area (C)	80	75	75	65
4.	Silence zone (D)	55	45	50	45

Note:

- 1. Day time hours: 6 .00 am to 10.00 pm
- 2. Night Time hours: 10.00 pm to 6.00 am
- 3. Silence zone: Zones which are declared as such by the competent authority. An area comprising not less than 100 meters around hospitals, educational institutions and courts and courts.
- 4. Mixed categories of areas may be declared as one of the four above-mentioned categories by the competent authority.
- 5. dB(A) Leq: time weighted average of the level of sound in decibels on scale A which is relatable to human hearing.

Pollutants	Time-weighted	Concentration	in Ambient Air	Method of	
	Average	Effective from 1st July 2010	Effective from 1st January 2013	 Measurement 	
	Annual Average*	80 μg/m ³	80 μg/m ³	-Ultra Violet	
(SO ₂)	24 hours**	120 μg/m ³	120 μg/m ³	Fluorescence method	
	Annual Average*	40 μg/m ³	40 μg/m ³	-Gas Phase	
Nitrogen as (NO)	24 hours**	40 μg/m ³	40 µg/m ³	[–] Chemiluminescence	
	Annual Average*	40 μg/m ³	40 μg/m ³	-Gas Phase	
Nitrogen as (NO ₂)	24 hours**	40 μg/m ³	80 μg/m ³	[–] Chemiluminescence	
O ₃	1 hour	180 μg/m ³	130 μg/m ³	-Non dispersive UV absorption method	
Suspended	Annual Average*	400 μg/m ³	360 μg/m ³	-High Volume	
Particulate Matter (SPM)	24 hours**	550 μg/m ³	500 μg/m ³	 Sampling, (Average flow rate not less th 1.1 m³/min) 	
Respirable	Annual Average*	200 μg/m ³	120 μg/m ³	-β Ray Absorption	
particulate Matter. PM ₁₀	24 hours**	250 μg/m ³	150 μg/m ³	[–] method	
Respirable	Annual Average*	25 μg/m ³	15 μg/m ³	-β Ray Absorption	
Particulate Matter. PM 2.5	24 hours**	40 μg/m ³	35 μg/m ³	[–] method	
2.5	1 hour	25 μg/m ³	15 μg/m ³	_	
Lead (Pb)	Annual Average*	1.5 μg/m ³	1 μg/m ³	ASS Method after	
	24 hours**	2 μg/m ³	1.5 μg/m ³	 sampling using EPM 2000 or equivalent Filter paper 	
Carbon	8 hours**	5 mg/m ³	5 mg/m ³	Non Dispersive Infra	
Monoxide (CO)	1 hour	10 mg/m ³	10 mg/m ³	- Red (NDIR) method	

Table 6: NEQS for Ambient Air

* Annual arithmetic mean of minimum 104 instruments in a year taken twice a week 24 hourly at uniform interval

** 24 hourly /8 hourly values should be met 98% of the in a year. 2% of the time, it may exceed but not on two consecutive days.

Properties/ Parameters	Standard Values For Pakistan	Who Guidelines	Remarks
Bacterial			
All water intended for drinking (e.Coli or Thermo tolerant Coliform bacteria)	Must not be detectable in any 100 ml sample	Must not be detectable in any 100 ml sample	Most Asian countries also follow WHC standards
Treated water entering the distribution system (E.Coli or thermo tolerant coliform and total coliform bacteria)		Must not be detectable in any 100 ml sample	Most Asiar countries also follow WHC standards
distribution system (E.coli or thermo tolerant	Treated water in the Must not be detectable in Must not be detectable in distribution system (E.coli any 100 ml sample In case any 100 ml sample In case or thermo tolerant of large supplies, where of large supplies, where coliform and total coliform sufficient samples are sufficient samples are		countries also
Physical			
Colour	≤15 TCU	≤15 TCU	
Taste	Non objectionable/Accept able	Non objectionable/Accept able	
Odour	Non objectionable/Accept able	Non objectionable/Accept able	
Turbidity	< 5 NTU	< 5 NTU	
Total hardness as CaCO3	< 500 mg/l	_	
TDS	< 1000	< 1000	
рН	6.5 – 8.5	6.5 – 8.5	
Chemical			
Essential Inorganic	mg/Litre	mg/Litre	
Aluminium (Al) mg/1	<0.2	0.2	
Antimony (Sb)	<0.005 (P)	0.02	
Arsenic (As) < 0.05 (P) 0.01		0.01	Standard for Pakistan similar to most Asian developing countries
Barium (Ba)	0.7	0.7	
Boron (B)	0.3	0.3	
Cadmium (Cd)	0.01	0.003	Standard for Pakistan similar to most Asian developing countries
Chloride (Cl)	<250	250	
Chromium (Cr)	<0.05	0.05	
Copper (Cu)	2	2	
Toxic Inorganic	mg/Litre	mg/Litre	
Cyanide (CN)	<0.05	0.07	Standard for Pakistan similar to Asian developing countries

Table 7: NEQS for Drinking Water

Properties/ Parameters	Standard Values For Pakistan	Who Guidelines	Remarks
Fluoride (F)*	<1.5	1.5	
Lead (Pb)	<0.05	0.01	Standard for Pakistan similar to most Asian developing countries
Manganese (Mn)	< 0.5	0.5	
Mercury (Hg)	<0.001	0.001	
Nickel (Ni)	<0.02	0.02	
Nitrate (NO3)*	<50	50	
Nitrite (NO2)*	<3 (P)	3	
Selenium (Se)	0.01(P)	0.01	
Residual chlorine	0.2-0.5 at consumer end 0.5-1.5 at source	– t	
Zinc (Zn)	5.0 3		Standard for Pakistan similar to most Asian developing countries
* indicates priority health re	elated inorganic constituents	which need regular monitoring.	
Organic			
Pesticides mg/L		PSQCA No. 4639-2004, Page No. 4 Table No. 3 Serial No. 20- 58 may be consulted.***	Annex II
Phenolic compounds (as Phenols) mg/L		< 0.002	
Polynuclear aromatic hydrocarbons (as PAH) g/L		0.01 (By GC/MS method)	
Radioactive			
Alpha Emitters bq/L or pCi	0.1	0.1	
poi			

*** PSQCA: Pakistan Standards Quality Control Authority.

Proviso:

 The existing drinking water treatment infrastructure is not adequate to comply with WHO guidelines. The arsenic concentrations in South Punjab and in some parts of Sindh have been found high then Revised WHO guidelines. It will take some time to control arsenic through treatment process. Lead concentration in the proposed standards is higher than WHO Guidelines. As the piping system for supply of drinking water in urban centres are generally old and will take significant resources and time to get them replaced. In the recent past, lead was completely phased out from petroleum products to cut down lead entering into environment. These steps will enable to achieve WHO Guidelines for Arsenic, Lead, Cadmium and Zinc. However, for the bottled water, WHO limits for Arsenic, Lead, Cadmium and Zinc will be applicable and PSQCA Standards for all the remaining parameters.

Table 7: NEQS for Motor Vehicle Exhaust and Noise

Table 7.1: For in Use Vehicles

Sr. No	Parameter	Standards (maximum permissible limit)	Measuring method
1	Smoke	40 % or 2 on the ringlemann scale during engine acceleration mode	To be compared with ringlemann chart at a distance of 6 meters or more
2	Carbon Monoxide	6 %	Under idling conditions: Non dispersive infrared detection through gas analyzer
3	Noise	85 db (A)	Sound meter at 7.5 meters from the source

Table 7.2: For New Vehicles (Diesel)

(a) Emission Standards for Passenger Cars and Light Commercial Vehicles (g/Km)

Type of Vehicle	Category/Class	Tiers	CO	HC+ NOx	РМ	Measuring Method
Passenger	M1: with reference mass	Pak-II IDI	1.0	0.7	0.08	NEDC (ECE
Cars	(RW) upto 2500 kg. Cars with RW over 2500 kg to meet NI category standards	Pak-II DI	1.0	0.9	0.10	15 + EUDCL)
Light	N1-I (RW<1250 kg)	Pak-II IDI	1.0	0.70	0.08	
Commercial		Pak-II DI	1.0	0.90	0.10	
Vehicles	N1-II (1250 kg <rw<1700< td=""><td>Pak-II IDI</td><td>1.25</td><td>1.0</td><td>0.12</td><td></td></rw<1700<>	Pak-II IDI	1.25	1.0	0.12	
	kg)	Pak-II DI	1.25	1.3	0.14	
	N1-III (RW>1700 kg)	Pak-II IDI	1.50	1.2	0.17	
		Pak-II DI	1.50	1.6	0.20	

Parameter	Standards limit)	(maximum	permissible	Measuring Method
Noise	85 db (A)			Sound-meter at 7.5 meters from the source

(b) Emission Standards for Heavy Duty Diesel Engines and Large Goods Vehicles (g/Kwh)

Type of Vehicle	Category/Class	Tiers	CO	HC+	NOx	РМ	Measuring Method
Heavy Duty Diesel Engines	Trucks and Buses	Pak- II	4.0	1.1	7.0	0.15	ECE-R-49
Large Goods Vehicles	N2 (2000 and up)	Pak- II	4.0	7.0	1.10	0.15	EDC

Parameter	Standards limit)	(maximum	permissible	Measuring Method
Noise	85 db (A)			Sound-meter at 7.5 meters from the source

Table 7.3: For New Vehicles (Petrol)

Type of Vehicle	Category/Class	Tiers	СО	HC+ Nox	Measuring Method
Passenger Cars	M1: with reference mass (RW) upto 2500 kg. Cars with RW over 2500 kg to meet N1 category standards	Pak-II IDI	2.20	0.5	NEDC (ECE 15 + EUDCL)
Light	N1-I (RW<1250 kg)	Pak-II	2.20	0.5	
Commercial	N1-II (1250 kg <rw<1700 kg)<="" td=""><td>Pak-II</td><td>4.0</td><td>0.65</td><td></td></rw<1700>	Pak-II	4.0	0.65	
Vehicles	N1-III (RW>1700 kg)	Pak-II	5.0	0.08	
Motor	2,4 strokes<150cc	Pak-II	5.5	1.5	ECER 40
Rickshaws and motor cycles	2,4 strokes>150cc	Pak-II	5.5	1.3	

Emission Standards for Petrol Vehicles (g/km)

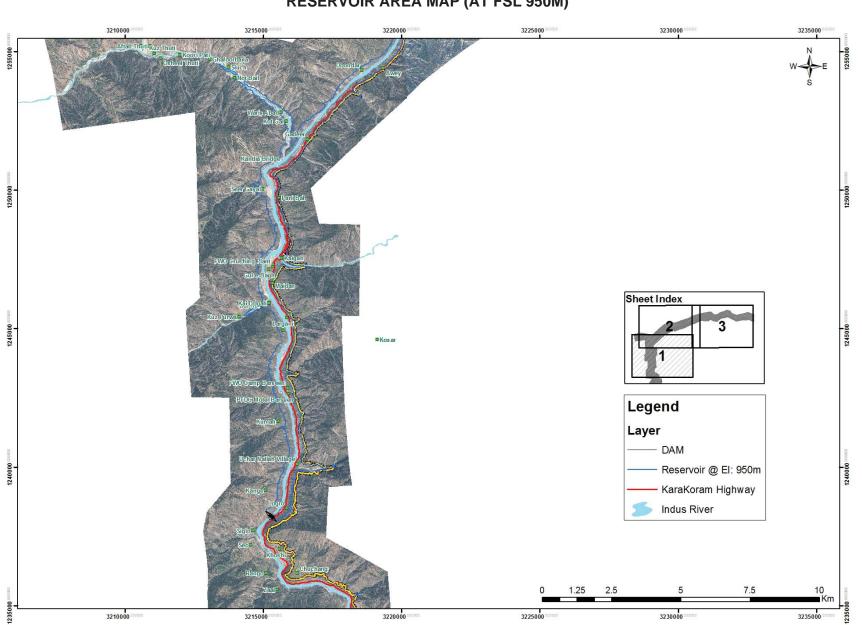
Parameter	Standards permissible limit)	(maximum	Measuring Method
Noise	85 db (A)		Sound-meter at 7.5 meters from the source

Explanation:

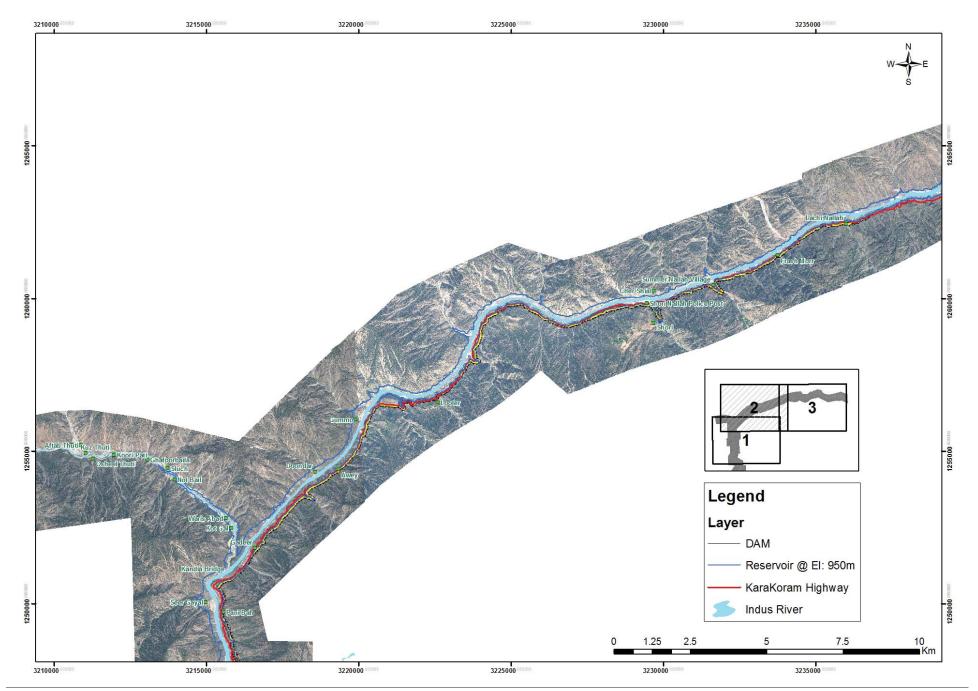
DI: Direct Injection

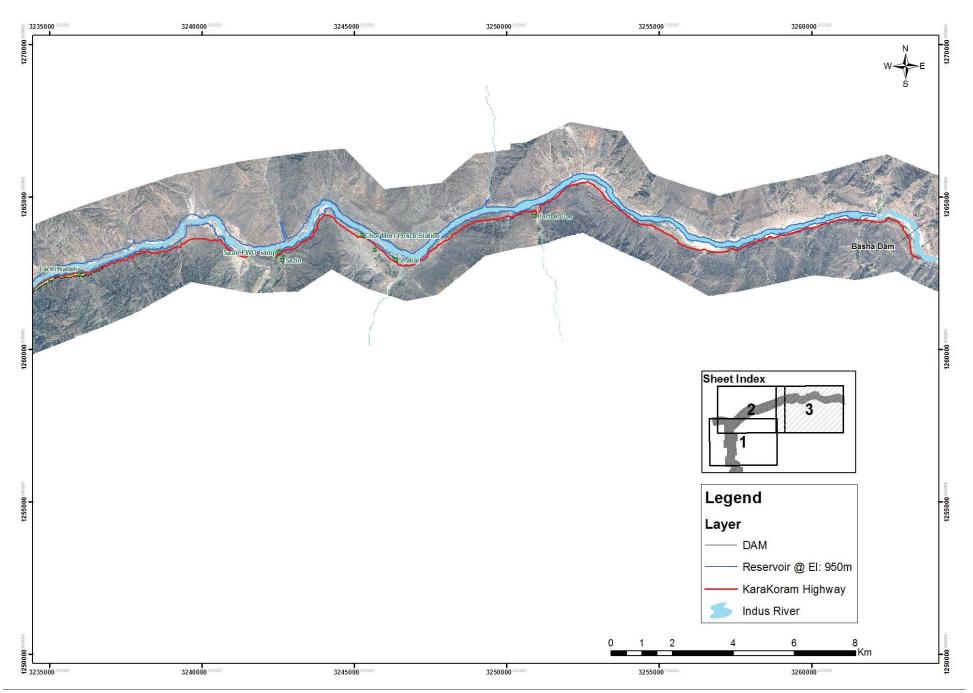
IDI: Indirect Injection

EUDCL: Extra urban driving cycle


NEDC: New European driving cycle

ECE: urban driving cycle


M: Vehicle designed and constructed for the carriage of passengers and comprising no more than eight seats in addition to the driver's seat.


N: Motor vehicles with at least four wheels designed and constructed for the carriage of goods.

*: New models mean both model and engine type change

Annex – 3.1 RESERVOIR AREA MAP (AT FSL 950M)

Annex – 4.1

WATER QUALITY RESULTS DURING DETAIL DESIGN AND FEASIBILITY STUDIES

				SAMPLI	NG SITES (Hig	gh Flow)			*STANI	DARDS	
Sr.	PARAMETER	Harban	Darel River	Tangir	Summer	Churi	Lutar	Kandia	(Surface	e Water)	Remarks
No.		Das	Darch Kiver	River	Nullah	Nullah	Nullah	River	**Table 5 -	***Table 6	Remarks
		(River)	(Stream)	(Stream)	(Stream)	(Stream)	(Stream)	(Stream)	Class C	- Class D	
1	Temperature (°C)	18	21	16.4	19	16.4	20.7	18	-	-	-
2	pН	7.03	7.38	7.42	7.12	7.42	7.82	7.75	6.5 - 8.5	6.5 - 8.4	Complied
3	Dissolved Oxygen (mg/l)	9.3	8.8	8.8	8.7	8.8	8.8	7.7	>5.0	>4.0	Complied
4	Conductivity (µS/cm)	201.3	121.3	30.1	50.9	29.1	78.6	87.9	1500	1500	Complied
5	Turbidity (NTU)	3	2.4	1.445	8.05	1.52	1	8.45	-	-	-
6	Total Hardness as CaCO ₃ (mg/l)	8	10	13.8	12	13.8	23.4	10.01	-	-	-
7	BOD ₅ (mg/l)	0.25	0.21	0.32	0.61	0.20	0.46	0.25	8.0	8.0	Complied
8	COD (mg/l)	0.60	1.01	1.40	1.80	0.70	1.64	1.22	-	-	-
9	Total Dissolved Solids (mg/l)	72.2	63	14	25.6	14	38.6	43.4	1000	1000	Complied
10	Total Suspended Solids (mg/l)	84	BDL	BDL	BDL	BDL	BDL	17	-	-	-
11	Chloride (mg/l)	10	8	4	6.4	5.5	2.5	4.5	-	100	Complied
12	Chlorine (mg/l)	BDL	0.015	0.055	0.05	0.195	0.045	0.1	-	-	-
13	Sodium (mg/l)	5.95	2.01	3.08	2.20	1.44	1.50	1.91	-	-	-
14	Fluoride (mg/l)	BDL	0.75	BDL	0.52	BDL	0.11	BDL	1.5	1.0	Complied
15	lodine (mg/l)	BDL	0.1	0.39	0.15	0.75	0.21	0.75	-	-	-
16	Sulphate (mg/l)	BDL	BDL	0.5	BDL	0.5	1.5	1	-	-	-
17	Sulphide (mg/l)	1.18	BDL	0.09	0.39	0.09	0.25	0.32	-	-	-

Table 4.1.1: Water Quality Results during July/August 2012

				SAMPLI	NG SITES (Hig	gh Flow)			*STANI	DARDS	
Sr.	PARAMETER	Harban	Darel River	Tangir	Summer	Churi	Lutar	Kandia	(Surface	e Water)	Remarks
No.		Das		River	Nullah	Nullah	Nullah	River	**Table 5 -	***Table 6	
		(River)	(Stream)	(Stream)	(Stream)	(Stream)	(Stream)	(Stream)	Class C	- Class D	
18	Nitrogen Ammonia (mg/l)	0.92	BDL	BDL	BDL	BDL	BDL	BDL	1.0	-	Complied
19	Nitrate (mg/l)	3.5	0.3	0.09	0.6	0.09	2	2.9	-	-	-
20	Cyanide (mg/l)	0.008	0.003	0.025	0.03	0.02	0.045	0.035	0.005	1.0	Complied
21	Copper (mg/l)	0.0120	0.0015	0.0025	0.0024	0.0028	0.0032	0.0060	0.007	0.20	Complied
22	Cadmium (mg/l)	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.002	0.01	Complied
23	Chromium (mg/l)	0.01572	0.00640	0.02001	0.00896	0.00555	0.00639	0.00772	0.05	0.01	Complied
24	Lead (mg/l)	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.01	0.1	Complied
25	Silver (mg/l)	0.00037	BDL	0.0002	BDL	BDL	BDL	BDL	-	-	-
26	Zinc (mg/l)	0.014	0.003	0.010	0.062	0.002	0.002	0.006	0.086	2.0	Complied
27	Nickel (mg/l)	0.0215	0.0105	0.0179	0.0078	0.0062	0.0050	0.0113	0.05	0.20	Complied
28	Arsenic (mg/l)	0.0070	BDL	0.0014	0.0010	0.0013	BDL	0.0017	0.05	0.10	Complied
29	Selenium (mg/l)	0.00079	BDL	BDL	BDL	BDL	0.00091	BDL	0.005	0.02	Complied
30	Manganese (mg/l)	0.1206	0.0016	0.0119	0.0050	0.0018	0.0027	0.0118	0.10	0.20	Complied
31	Iron (mg/l)	0.230	0.093	0.203	0.289	0.071	0.132	0.264	0.3	5.0	Complied
32	Barium (mg/l)	0.0360	0.0120	0.0344	0.0344	0.0240	0.0275	0.0120	-	-	-
33	Boron (mg/l)	0.021	0.02	0.009	0.02	0.01	0.046	BDL	1.0	1.0	Complied
34	Mercury (mg/l)	0.0006	0.000462	0.00171	0.00036	BDL	BDL	0.002	0.000012	0.01	Complied
35	Magnesium (mg/l)	9.29	1.47	1.45	1.15	0.71	1.74	1.17	-	-	-
36	Phenolic Compounds (mg/l)	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.01	-	Complied

				SA	MPLING SIT	ES (High Flo	ow)			*STANI	DARDS	
Sr. No.	PARAMETER	Barseen Gah	Uchar Nullah	Dam Axis	Segloo	Dasu Nullah	Komela JalKot	D/s of Jalkot	U/s of Pattan	(Surface	-	Remarks
110.		(Stream)	(Stream)	(River)	(River)	(Stream)	(River)	(River)	(River)	**Table 5 - Class C	***Table 6 - Class D	
1	Temperature (°C)	15.5	16.5	21	17	15.6	18.3	-	-	-	-	-
2	pН	7.64	7.62	8.07	8.1	7.65	7.5	8.11	8.09	6.5 - 8.5	6.5 - 8.4	Complied
3	Dissolved Oxygen (mg/l)	8.6	8.9	8.2	8.02	8.1	8.2	9.3	9.7	>5.0	>4.0	Complied
4	Conductivity (µS/cm)	92.8	29.8	211.1	182.6	124.9	234.4	171.2	152.6	1500	1500	Complied
5	Turbidity (NTU)	3	1	45	65	0.545	70.5	57.5	59.5	-	-	-
6	Total Hardness as CaCO3 (mg/l)	BDL	10.6	62.6	65	40.2	59.8	30	43	-	-	-
7	BOD5 (mg/l)	0.37	0.50	1.00	1.20	0.20	0.45	0.42	0.55	8.0	8.0	Complied
8	COD (mg/l)	2.47	2.07	4.27	3.87	1.00	1.56	1.40	2.00	-	-	-
9	Total Dissolved Solids (mg/l)	44	15	105	90.6	56	115.8	80	75.5	1000	1000	Complied
10	Total Suspended Solids (mg/l)	BDL	BDL	126.7	16	BDL	245	22	19	-	-	-
11	Chloride (mg/l)	3.5	BDL	9	7	1	BDL	11	12	-	100	Complied
12	Chlorine (mg/l)	0.045	0.08	0.375	0.005	0.025	0.145	0.09	0.1	-	-	-
13	Sodium (mg/l)	3.36	BDL	3.94	6.12	3.80	2.29	5.02	7.13	-	-	-
14	Fluoride (mg/l)	BDL	BDL	1.12	0.547	0.09	BDL	0.9	0.6	1.5	1.0	Complied
15	lodine (mg/l)	0.27	0.25	0.9	0.14	0.16	0.33	0.22	0.23	-	-	-
16	Sulphate (mg/l)	2	4	37	35.5	0.18	30	4.5	3.9	-	-	-
17	Sulphide (mg/l)	0.45	BDL	0.54	0.64	0.23	0.05	0.52	0.45	-	-	-
18	Nitrogen Ammonia (mg/l)	0.01	1.02	2.525	0.73	0.845	2.525	1.47	1.445	1.0	-	Not Complied
19	Nitrate (mg/l)	1.8	0.2	1.9	1.7	0.6	0.02	2.1	2.3	-	-	-
20	Cyanide (mg/l)	0.015	0.02	0.045	0.02	0.005	0.035	0.035	0.03	0.005	1.0	Complied
21	Copper (mg/l)	0.0027	0.0024	0.0060	0.0292	0.0061	0.0083	0.0176	0.0114	0.007	0.20	Complied
22	Cadmium (mg/l)	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.002	0.01	Complied

Dasu Hydropower Project

				SA	MPLING SIT	ES (High Flo	ow)			*STANE	DARDS	
Sr.	PARAMETER	Barseen	Uchar	Dam	Segloo	Dasu	Komela	D/s of	U/s of	(Surface	Water)	Remarks
No.	FARAMETER	Gah	Nullah	Axis	Segioo	Nullah	JalKot	Jalkot	Pattan	**Table 5 -	***Table 6	itema ka
		(Stream)	(Stream)	(River)	(River)	(Stream)	(River)	(River)	(River)	Class C	- Class D	
23	Chromium (mg/l)	0.01001	0.0067	0.01324	0.03342	0.00931	0.01106	0.0040	0.00500	0.05	0.01	Complied
24	Lead (mg/l)	BDL	BDL	BDL	BDL	0.0101	BDL	BDL	BDL	0.01	0.1	Complied
25	Silver (mg/l)	BDL	BDL	BDL	0.0004	BDL	0.0002	BDL	BDL	-	-	-
26	Zinc (mg/l)	0.063	0.010	0.004	0.065	0.062	0.052	0.013	0.018	0.086	2.0	Complied
27	Nickel (mg/l)	0.0091	0.0046	0.0164	0.0172	0.0098	0.0127	0.0200	0.0210	0.05	0.20	Complied
28	Arsenic (mg/l)	0.0029	BDL	0.0019	0.0107	0.0014	0.0047	0.0320	0.0200	0.05	0.10	Complied
29	Selenium (mg/l)	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.00093	0.005	0.02	Complied
30	Manganese (mg/l)	0.0057	0.0032	0.0444	0.0373	0.0054	0.0742	0.0720	0.0846	0.10	0.20	Complied
31	Iron (mg/l)	0.280	0.066	0.205	0.159	0.250	0.286	0.271	0.562	0.3	5.0	Complied
32	Barium (mg/l)	0.0172	BDL	BDL	0.2287	0.1203	0.0962	0.0180	0.0163	-	-	-
33	Boron (mg/l)	0.03	0.09	0.19	0.102	0.022	0.02	0.06	0.21	1.0	1.0	Complied
34	Mercury (mg/l)	BDL	0.0016	BDL	BDL	BDL	BDL	0.002	BDL	0.000012	0.01	Complied
35	Magnesium (mg/l)	2.51	1.17	3.73	10.40	3.42	3.50	1.20	1.80	-	-	-
36	Phenolic Compounds (mg/l)	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.01	-	Complied

				SAMPL	ING SITES (Lo	w Flow)			*STANI	DARDS	
Sr. No.	PARAMETER	Harban Das	Darel River	Tangir River	Summer Nullah	Churi Nullah	Lutar Nullah	Kandia River	(Surface **Table 5 -	Water) ***Table 6	Remarks
		(River)	(Stream)	(Stream)	(Stream)	(Stream)	(Stream)	(Stream)	Class C	- Class D	
1	Temperature (°C)	6.7	8.2	9.5	9	9.5	12.6	13.9	-	-	-
2	рН	7.9	7.76	7.53	7.64	7.44	7.88	7.88	6.5 - 8.5	6.5 - 8.4	Complied
3	Dissolved Oxygen (mg/l)	7.6	9	7.3	7.45	7.06	6.5	7.2	>5.0	>4.0	Complied
4	Conductivity (µS/cm)	325	135	118	56	62	85	92	1500	1500	Complied
5	Turbidity (NTU)	22.1	32	0.97	1.1	0.34	0.8	1.7	-	-	-
6	Total Hardness as CaCO3 (mg/l)	125	65	52	28	25	38	52	-	-	-
7	BOD5 (mg/l)	1.0	1.0	1.30	1.0	0.71	0.80	0.95	8.0	8.0	Complied
8	COD (mg/l)	7.60	4.80	7.50	5.10	3.90	6.40	3.50	-	-	-
9	Total Dissolved Solids (mg/l)	108	68	57	27	30	42	46	1000	1000	Complied
10	Total Suspended Solids (mg/l)	25	BDL	BDL	BDL	4	BDL	BDL	-	-	-
11	Chloride (mg/l)	18.6	9.6	7.8	9.3	8.1	6.5	15.3	-	100	Complied
12	Chlorine (mg/l)	0.04	0.05	0.01	0.06	0.03	0.02	0.03	-	-	-
13	Sodium (mg/l)	6.89	3.8	4.25	3.46	3.52	3.2	4.98	-	-	-
14	Fluoride (mg/l)	0.43	0.11	0.02	0.05	0.08	0.06	0.09	1.5	1.0	-
15	lodine (mg/l)	0.19	0.09	0.15	0.16	0.2	0.12	0.19	-	-	-
16	Sulphate (mg/l)	47	6	6	27	5	3	3.3	-	-	-
17	Sulphide (mg/l)	0.6	0.7	0.2	0.9	1	0.3	0.3	-	-	-
18	Nitrogen Ammonia (mg/l)	0.06	0.01	0.02	0.09	0.01	0.05	0.1	1.0	-	-
19	Nitrate (mg/l)	1.6	1.9	1.9	1.6	1.5	2.6	1.7	-	-	-
20	Cyanide (mg/l)	BDL	BDL	BDL	0.0008	BDL	0.0011	0.0012	0.005	1.0	Complied

Table 4.1.2: Water Quality Results during December 2012

				SAMPL	ING SITES (Lo	w Flow)			*STANI	DARDS	
Sr.	PARAMETER	Harban	Darel River	Tangir	Summer	Churi	Lutar	Kandia	(Surface	e Water)	Remarks
No.		Das	Baron navon	River	Nullah	Nullah	Nullah	River	**Table 5 -	***Table 6	Romanio
		(River)	(Stream)	(Stream)	(Stream)	(Stream)	(Stream)	(Stream)	Class C	- Class D	
21	Copper (mg/l)	0.005	0.0049	0.0063	0.0065	0.005	0.0047	0.0038	0.007	0.20	Complied
22	Cadmium (mg/l)	0.0002	0.0003	0.0007	0.001	0.0007	0.0003	0.0003	0.002	0.01	Complied
23	Chromium (mg/l)	0.021	0.0106	0.0182	0.0136	0.008	0.00817	0.0062	0.05	0.01	Complied
24	Lead (mg/l)	0.009	0.006	0.007	0.009	0.006	0.005	0.009	0.01	0.1	Complied
25	Silver (mg/l)	BDL	BDL	0.002	0.0012	0.001	BDL	0.0006	-	-	-
26	Zinc (mg/l)	0.03	0.028	0.032	0.0514	0.02	0.025	0.019	0.086	2.0	Complied
27	Nickel (mg/l)	0.016	0.025	0.033	0.034	0.026	0.0257	0.019	0.05	0.20	Complied
28	Arsenic (mg/l)	0.007	BDL	0.012	0.007	0.01	0.001	0.0007	0.05	0.10	Complied
29	Selenium (mg/l)	0.000112	0.00037	0.00064	0.00057	0.0004	0.00022	0.00025	0.005	0.02	Complied
30	Manganese (mg/l)	0.0122	0.047	0.0145	0.059	0.046	0.017	0.016	0.10	0.20	Complied
31	Iron (mg/l)	0.04	0.025	0.047	0.034	0.02	0.018	0.014	0.3	5.0	Complied
32	Barium (mg/l)	0.12	0.119	0.083	0.0223	0.07	0.064	0.029	-	-	-
33	Boron (mg/l)	0.026	0.051	0.01	0.045	0.035	0.065	0.023	1.0	1.0	Complied
34	Mercury (mg/l)	0.00002	0.000005	0.000007	0.000009	BDL	BDL	0.000008	0.000012	0.01	Complied
35	Magnesium (mg/l)	8.58	2.51	2.33	1.76	1.59	2.53	1.53	-	-	-
36	Phenolic Compounds (mg/l)	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.01	-	Complied

				SAMPL	ING SITES (Lo	w Flow)			*STANI	DARDS	
Sr. No.	PARAMETER	Barseen Gah	Uchar Nullah	Dam Axis	Segloo	Dasu Nullah	Komela JalKot	D/s of Jalkot	(Surface	-	Remarks
		(Stream)	(Stream)	(River)	(River)	(Stream)	(River)	(River)	**Table 5 - Class C	***Table 6 - Class D	
1	Temperature (°C)	11.2	11.1	8.7	11.7	15.5	10.1	10.1	-	-	-
2	рН	8.06	7.89	8.05	8.01	8.01	7.95	7.3	6.5 - 8.5	6.5 - 8.4	Complied
3	Dissolved Oxygen (mg/l)	6.9	7	7.75	7.4	7.1	7.81	7.92	>5.0	>4.0	Complied
4	Conductivity (µS/cm)	100	89	265	272	199	275	301	1500	1500	Complied
5	Turbidity (NTU)	0.96	0.3	20.6	17.5	0.92	20	12.9	-	-	-
6	Total Hardness as CaCO3 (mg/l)	45	35	128	125	90	118	115	-	-	-
7	BOD5 (mg/l)	0.82	0.75	0.9	1.20	1.0	3.0	4.0	8.0	8.0	Complied
8	COD (mg/l)	5.2	4.75	8.9	5.2	3.5	7.0	7.7	-	-	-
9	Total Dissolved Solids (mg/l)	48	44	132	135	90	137	142	1000	1000	Complied
10	Total Suspended Solids (mg/l)	8	BDL	19	8	3	8.9	1	-	-	-
11	Chloride (mg/l)	5.5	10.3	11	18.2	6.8	13.4	14.3	-	100	Complied
12	Chlorine (mg/l)	0.02	0.01	0.04	0.02	0.03	0.03	0.05	-	-	-
13	Sodium (mg/l)	4.83	3.12	6.44	7.53	3.99	8.66	4.3	-	-	-
14	Fluoride (mg/l)	0.02	0.11	0.22	0.05	0.01	0.34	0.26	1.5	1.0	Complied
15	lodine (mg/l)	0.08	0.07	0.12	0.18	0.15	0.12	0.16	-	-	-
16	Sulphate (mg/l)	3	5	46	46.5	8	47	46	-	-	-
17	Sulphide (mg/l)	0.2	0.5	1.7	0.6	0.3	1.3	1.1	-	-	-
18	Nitrogen Ammonia (mg/l)	0.06	0.07	0.22	0.15	0.09	0.06	0.03	1.0	-	Complied
19	Nitrate (mg/l)	1.3	2.8	1.8	1.3	3.1	1.3	1.1	-	-	-
20	Cyanide (mg/l)	BDL	BDL	0.002	0.0011	BDL	0.0018	0.0012	0.005	1.0	Complied
21	Copper (mg/l)	0.005	BDL	0.0052	BDL	0.0065	0.0041	0.006	0.007	0.20	Complied
22	Cadmium (mg/l)	0.001	0.00002	0.0002	0.00004	0.0005	0.0002	0.0012	0.002	0.01	Complied

				SAMPLI	ING SITES (Lo	w Flow)			*STANI	DARDS	
Sr.	PARAMETER	Barseen	Uchar	Dam Axis	Segloo	Dasu	Komela	D/s of	(Surface	Water)	Remarks
No.		Gah	Nullah		Segioo	Nullah	JalKot	Jalkot	**Table 5 -	***Table 6	Remarks
		(Stream)	(Stream)	(River)	(River)	(Stream)	(River)	(River)	Class C	- Class D	
23	Chromium (mg/l)	0.008	0.005	0.017	0.006	0.0184	0.0086	0.011	0.05	0.01	Complied
24	Lead (mg/l)	0.006	BDL	0.01	BDL	0.007	0.005	0.00839	0.01	0.1	Complied
25	Silver (mg/l)	BDL	BDL	BDL	BDL	0.0019	BDL	0.0002	-	-	-
26	Zinc (mg/l)	0.032	BDL	0.028	BDL	0.037	0.024	0.04	0.086	2.0	Complied
27	Nickel (mg/l)	0.017	BDL	0.027	BDL	0.031	0.012	0.02	0.05	0.20	Complied
28	Arsenic (mg/l)	0.009	0.0044	0.004	0.006	0.0127	BDL	0.013	0.05	0.10	Complied
29	Selenium (mg/l)	0.00098	BDL	0.00089	BDL	BDL	0.00057	0.00011	0.005	0.02	Complied
30	Manganese (mg/l)	0.056	BDL	0.097	BDL	0.0507	0.062	0.06	0.10	0.20	Complied
31	Iron (mg/l)	0.021	BDL	0.035	BDL	0.023	0.022	0.026	0.3	5.0	Complied
32	Barium (mg/l)	0.154	BDL	0.12	BDL	0.191	0.035	0.187	-	-	-
33	Boron (mg/l)	0.059	0.131	0.151	0.013	0.036	0.051	0.073	1.0	1.0	Complied
34	Mercury (mg/l)	BDL	0.000014	BDL	BDL	BDL	BDL	0.00003	0.000012	0.01	Complied
35	Magnesium (mg/l)	2.74	2.02	4.13	9.85	4.86	3.6	1.92	-	-	-
36	Phenolic Compounds (mg/l)	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.01	-	Complied

	PARAMETER			*STANI						
Sr. No.		U/s of Pattan	Besham	Thakot	New Darband	Khalabat	Торі	(Surface	e Water)	Remarks
		(River)	(River)	(River)	(River)	(Reservoir of Tarbela)	(Reservoir of Tarbela)	**Table 5 - Class C	***Table 6 - Class D	Nonding
1	Temperature (°C)	12.7	13.4	11.4	16.9	15	13	-	-	-
2	рН	8.2	7.6	8.18	7.85	7.88	7.7	6.5 - 8.5	6.5 - 8.4	Complied
3	Dissolved Oxygen (mg/l)	8.09	7.53	7.59	6.78	6.35	6.9	>5.0	>4.0	Complied
4	Conductivity (µS/cm)	262	255	261	235	230	239	1500	1500	Complied
5	Turbidity (NTU)	15.3	17	7.75	26	26.6	29	-	-	-
6	Total Hardness as CaCO3 (mg/l)	132	129	135	98	125	130	-	-	-
7	BOD5 (mg/l)	3.5	4.0	4.2	4.1	4.5	4.7	8.0	8.0	Complied
8	COD (mg/l)	8.5	7.5	9.6	8.5	8.1	9.5	-	-	-
9	Total Dissolved Solids (mg/l)	130	127	148	125	114	116	1000	1000	Complied
10	Total Suspended Solids (mg/l)	18	15	23	19	35	33	-	-	-
11	Chloride (mg/l)	22.7	35	33	37.3	20.5	30.7	-	100	Complied
12	Chlorine (mg/l)	0.03	0.04	0.06	0.05	0.04	0.05	-	-	-
13	Sodium (mg/l)	8.69	9.25	9.66	8.32	10.11	11.3	-	-	-
14	Fluoride (mg/l)	0.19	0.06	0.03	0.05	BDL	0.03	1.5	1.0	Complied
15	lodine (mg/l)	0.09	0.27	0.16	0.18	0.1	0.15	-	-	-
16	Sulphate (mg/l)	41	43	41	38	18	21	-	-	-
17	Sulphide (mg/l)	1.08	1.3	0.6	0.9	1.8	0.8	-	-	-
18	Nitrogen Ammonia (mg/l)	0.14	0.23	0.1	0.02	0.12	0.1	1.0	-	Complied
19	Nitrate (mg/l)	1.6	1.5	1.6	1.1	2.4	2	-	-	-
20	Cyanide (mg/l)	0.0012	0.0008	0.0011	0.0011	BDL	BDL	0.005	1.0	Complied
21	Copper (mg/l)	0.0073	0.0062	0.0065	0.004	0.0045	0.004	0.007	0.20	Complied
22	Cadmium (mg/l)	0.0005	0.0011	0.0007	0.0007	0.0005	0.0006	0.002	0.01	Complied

	PARAMETER			*STANDARDS						
Sr.		U/s of Pattan	Besham	Thakot	New Darband	Khalabat	Торі	(Surface Water)		Remarks
No.		(River)	(River)	(River)	(River)	(Reservoir of Tarbela)	(Reservoir of Tarbela)	**Table 5 - Class C	***Table 6 - Class D	
23	Chromium (mg/l)	0.0122	0.0201	0.0086	0.0116	0.0243	0.0184	0.05	0.01	Complied
24	Lead (mg/l)	0.0027	0.008	0.009	0.0039	0.0039	0.003	0.01	0.1	Complied
25	Silver (mg/l)	0.0001	0.0007	0.00005	0.002	0.0008	0.001	-	-	-
26	Zinc (mg/l)	0.037	0.042	0.038	0.023	0.028	0.031	0.086	2.0	Complied
27	Nickel (mg/l)	0.038	0.0385	0.041	0.02	0.023	0.025	0.05	0.20	Complied
28	Arsenic (mg/l)	0.003	0.027	0.002	0.009	0.011	0.02	0.05	0.10	Complied
29	Selenium (mg/l)	0.00087	0.00125	0.00092	0.00077	0.00061	0.00063	0.005	0.02	Complied
30	Manganese (mg/l)	0.09	0.0746	0.085	0.0748	0.0149	0.082	0.10	0.20	Complied
31	Iron (mg/l)	0.052	0.051	0.065	0.026	0.049	0.045	0.3	5.0	Complied
32	Barium (mg/l)	0.054	0.159	0.052	0.07	0.115	0.09	-	-	-
33	Boron (mg/l)	0.134	0.0395	0.045	0.076	0.051	0.019	1.0	1.0	Complied
34	Mercury (mg/l)	BDL	0.000001	0.00002	0.00004	0.0000128	0.00005	0.000012	0.01	Complied
35	Magnesium (mg/l)	2.95	7.56	6.94	7.22	8.12	8.05	-	-	-
36	Phenolic Compounds (mg/l)	BDL	BDL	BDL	BDL	BDL	BDL	0.01	-	Complied

Volume 2 – Environmental Impact Assessment

:

 Table 4.1.3:
 Water Quality Results during Feasibility Studies

Sampling Site Sample Collected on River Samples September 27-28, 2007

		Sampling Sites										
Sr. No.	Parameter	Harban Bridge (SW-1)		Summer Nallah (SW-2)		At Dam Axis 5 (SW-3)		At 1 km d/s of Axis 5 (SW-4)		Downstream of Dasu (SW-5)		
		Phase I	Phase II	Phase I	Phase II	Phase I	Phase II	Phase I	Phase II	Phase I	Phase II	
1	Temperature (°C)	14.5	7.5	14	6.8	16.5	7.9	16	7	18	8.2	
2	Taste	No Taste	No Taste	No Taste	No Taste	No Taste	No Taste	No Taste	No Taste	No Taste	No Taste	
3	Odour	Odour Less	Odour Less	Odour Less	Odour Less	Odour Less	Odour Less	Odour Less	Odour Less	Odour Less	Odour Less	
4	Ph	6.8	7.8	6.8	8.1	6.9	8	6.8	7.7	7.01	7.5	
5	DO (mg/L)	8	8.2	8	8.3	7.8	8.2	7.8	7.9	7.4	7.8	
6	Conductivity (µS/cm)	70.9	73.1	68.6	70.7	67.3	68.2	71.2	71.4	72.8	73.5	
7	Turbidity (NTU)	45	48	70	71	75	78	70	72	80	81	
8	Hardness as CaCO3 (mg/L)	160	164	108	140	140	143	144	142	132	144	
9	BOD (mg/L)	1.9	2.0	2.1	2.1	2.2	2.4	2	2.1	2.6	2.6	
10	COD (mg/L)	3.1	3.3	3.3	3.4	3.9	3.9	3.2	3.4	3.8	4.1	
11	Total Dissolved Solids (mg/L)	42.6	45.3	41.5	45.5	41	46.2	42.8	45.2	44.1	49.3	
12	Total Suspended Solids (mg/L)	118	126	134	155	145	158	137	160	83	160	
13	Chloride (mg/L)	3.5	3.7	2.5	3.7	2.75	3.9	2.9	3.9	2.4	4.1	
14	Chlorine Total (µg/L)	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	
15	Sodium (mg/L)	2.27	2.30	1.62	2.30	1.75	2.35	1.88	2.38	1.56	2.45	
16	Fluoride (µg/L)	ND	ND	ND	ND	ND	ND	50	65	ND	62	
17	lodine (mg/L)	0.33	0.50	0.21	0.60	0.88	0.98	0.2	0.98	1.34	1.59	
18	Sulphate (mg/L)	42	48	40	50.4	39	53.2	40	53.5	38	56.1	
19	Sulphide (µg/L)	148	153	155	159	180	184	176	181	201	212	
20	Nitrogen Ammonia (mg/L)	0.47	0.13	0.98	0.07	0.95	0.01	0.89	0.1	0.65	0.09	
21	Nitrate (mg/L)	ND	ND	ND	ND	ND	0.93	ND	1.10	ND	1.15	
22	Cyanide (µg/L)	ND	ND	ND	ND	0.85	ND	0.92	ND	1.1	ND	

		Sampling Sites										
Sr. No.	Parameter	Harban Bridge (SW-1)		Summer Nallah (SW-2)		At Dam Axis 5 (SW-3)		At 1 km d/s of Axis 5 (SW-4)		Downstream of Dasu (SW-5)		
		Phase I	Phase II	Phase I	Phase II	Phase I	Phase II	Phase I	Phase II	Phase I	Phase II	
23	Coliforms (E.Coli) (Org/100m)	7	9	13	10	9	10	12	11	2	12	
24	Coliforms (Fecal) (Org/100m)	15	17	21	17	46	20	24	22	5	22	
25	Copper (Cu) (µg/L)	0.83	0.88	6.36	1.9	4.82	1.95	12.21	2.1	4.76	2.3	
26	Cadmium (Cd) (µg/L)	2.8	2.8	2.71	2.5	3.71	2.9	2.92	2.9	1.61	2.7	
27	Chromium (Cr) (µg/L)	4.2	3.8	3.1	3.9	4	3.9	4.5	4.2	4.8	4.2	
28	Lead(Pb) (µg/L)	17.06	18	17.14	17.2	16.36	17.5	16.93	19	19.22	19.5	
29	Silver (Ag) (µg/L)	0.03	0.01	0.04	0.08	0.02	0.1	0.03	0.02	0.06	0.05	
30	Zinc (Zn) (µg/L)	0.82	0.85	0.85	0.88	0.79	0.89	2.01	0.93	0.8	1.08	
31	Nickle (Ni) (µg/L)	12.7	5.8	9.8	5.8	3.8	6.2	8.7	6.25	6.8	7.1	
32	Arsenic (As) (µg/L)	3.6	1.82	3.1	1.96	2.9	1.99	3.5	2.15	3.8	2.45	
33	Selenium (Se) (µg/L)	0.05	0.01	0.03	0.08	0.04	0.095	0.09	0.06	0.12	0.098	
34	Manganese (Mn) (µg/L)	62.38	68	70.5	91	84	86	65.48	105.2	72	101.2	
35	Iron (Fe) (µg/L)	68	90.7	142	166.4	170	195.9	72	269.4	78	289.8	
36	Berium (Ba) (µg/L)	27.89	15.2	31.34	15.8	35	14.6	29.99	17.2	27	17.7	
37	Boron (B) (µg/L)	12.46	30.2	14.51	35.5	15	35.9	13.21	36.4	13	26.2	
38	Mercury (Hg) (µg/L)	0.71	ND	0.72	ND	0.92	ND	0.75	ND	0.84	ND	
39	Alpha BHC (pesticide) (µg/L)	ND	ND	0.33	0.28	0.35	0.49	0.44	0.54	0.51	0.59	
40	Gamma BHC(pesticide) (µg/L)	ND	ND	0.38	0.16	0.42	0.25	0.47	0.28	0.62	0.26	
41	4,4'-DDT (pesticide) (µg/L)	ND	ND	0.35	0.11	0.3	0.41	0.42	0.41	0.48	0.44	
42	Phenolic Compounds (n-octylphenol)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	

ND = Not Detected

Annex – 4.2

BIOLOGICAL INFORMATION OF INDIGENOUS FISH SPECIES

1. Schizothorax plagiostomus

Local Name:	Gahi in Northern Areas (Swati in KP)
Common Name:	Snow carp
Genus:	Schizothorax Heckal (1938) / Day (1889)
Sub-family:	Schizothoracinae
Family:	Cyprinidae
Order:	Cypriniformes

Distinct Features:

D2/9; P1/17-18; V1/10-9; A7; C19

A medium sized fish with both profiles arches. Its standard length is 78.9% of total length.

- Colour: Dorsally bluish grey with yellowish pink at ventral side
- Head: Large conical, flattened on ventral side.

Snout: Painted and compressed at interior end, its length is 45.5% of head length.

- Eyes: Large, dorsal lateral in position and situated in anterior half of the head.
- Mouth: Inferior, horizontal and greatly arched, bounded by thick fleshy lips which are continuous at angles of the mouth. Interior part of lower lip is well depending horny pad. Nostrils present, nearer the interior margin of the eye.
- Barbels: Two pairs present, rostral and maxillary barbels almost equal in length.
- Scales: Small: covering the entire body except head. Lateral line complete and distinct.
- Fins: Either yellow or pink

Occurrence: Inhibited in different rivers, lakes and tributaries throughout Himalayan region.

Feeding habits: Feeds on phytoplankton (diatoms & algae), zooplankton (rotifer, cyclops) mostly at bottom region (Benthivorous) scarps algae from substratum rocks of stones.

Breeding: Become ripe after 2 & 3 years. Having size of 18-24cm length & 150-200gm weight. Spawn in clear flowing water (2-8m/sec) on gravelly /stony ground or on fine pebbles substratum in rising temperature (month of Mar/April). Mature adult undertake short-distance spawning migration to incoming stream where they breed amidst gravel and sandy beds.

Development: Fertilized eggs undergoes a series of development process. Morula stage is attained after 10-12 hrs of fertilization. Hatching takes place 110-112 hrs after fertilization. Hatchings appears thin and yellow coloured yolksac bulbous in appearance. 2 days larva were more active but rests most of time at bottom. 3rd day larva still lays at bottom.

Distribution (in Pakistan): KPK, northern Punjab, northeastern Balochistan, Azad Kashmir. **(outside):** Afghanistan, Iran (sistan), India (Indus System only), China. **(in Project Area):** common in river Indus, Kaigah, Summer, Goshali, Pallas, Pattan, Sieglo, Kandia, Tingir, Darel stream/nullahs.

Source: 1. M.R. Mirza (1975) Freshwater Fishes & Zoogeography of Pakistan

- 2. M. Rafique (2001) Fish Fauna of Himalayans in Pakistan
- 3. S.N. Bahuguna (2006) & study of S. plagiostomus Project Report No. 4 (10) 2000/ASR-I/ 2003-2006

2. Racoma labiata (Mirza 1990)

Local Name:	Chun (very similar to Swati)
Common Name:	Snowcarp
Genus:	Racoma Mcelelland
	Schizothorax labiatus (Hora, 1934)
	Racoma labiatus (McClelland and Griffith, 1842)
Sub-family:	Schizothoracinae
Family:	Cyprinidae

Distinct Features:

- Colour: Greyish brown on dorsal side, yellowish below, dorsal and caudal fin grayish; other finds pinkish.
 - Head: Large & snout arches, Head length 20% of the total body, Both lips are large and upper lip cover the mouth, lower lip lobed, surrounded by four barbels (2 rostral & two maxillary)

Feeding Habits: It feeds on different types of algae, scrap on rocks and also minor organisms. Its feeding habits are more similar with Swati (Schizothorax plagiostomus). Gut analysis endorses that Racoma labiata species depends mostly on phyto and minor zooplankton.

Breeding: Breeding season falls in the month of August. DBC's sampling could not reveal its ripeness. All fish caught were stout, strong and healthy. Their feeding conditions were quite promising.

Importance: Very important as food fish in Northern Areas.

3. Schizopyge esocinus (Heckel, M.R. Mirza 1990)

Local Name:	Asala
Common Name:	Snowcarp
Genus:	Schizopyge Heckel
Sub-family:	Schizothoracinae
Family:	Cyprinidae
Order:	Cypriniformes

Distinct Features:

Colour: Silvery with black spots on the dorsal and lateral side (very similar to Brown Trout)

Body: Stout and stronger

Head: Large and about 22% of the body length, snout relatively conical, Mouth big but lips are thinner, surrounded by Four barbels.

Feeding Habits: It depends upon smaller organisms and predates smaller and minor fishes also.

Breeding: July 2006 samples showed developed sex organs but not of spent conditions. This showed that breeding was due in month of July 2006. Most of the mature samples were caught from upper reaches of Khanbari and Thak nullahs, which endorses its spawning grounds (upstream of Hydel Power Station). Its breeding takes place normally in the middle of July.

Importance This species is very precious source of protein in the area. Being wanted species as food anglers and commercial fishermen strive their best to catch Racoma labiate.

4. <u>Glyptosternum reticulatum</u>

Local Name:	Jungli Chemo, (Chikar)
Genus:	Glyptosternum McClelland 1842
Sub-family:	
Family:	Sisoridae
Order:	Siluriformes

Distinct Features:

- Colour: Grayish at dorsal & yellowish at ventral with yellowish spots (similar to rocky spotting). Fins yellowish having distinct lines.
- Head: Head flattered and round. Mouth at dorsal surrounded by eight barbels lives attaches beneath rocks and pebbles.

Size: Maximum size is 23cm.

Feed Habits: It depends on aquatic organism, insect, larva and minor organisms.

Breeding: It breeds in mouth of August, are differentiated easily.

Importance: Being predatory fish it balances the production of plankton. Even survives in the dry seasons.

5. *<u>Tor putitora (Hamilton – 1822)</u>*

Local Name:	Mahaseer
Genus:	Tor (Ahmad, 1943, Misra, 1959)
Sub-family:	Cyprininae
Family:	Cyprinidae
Order:	Cypriniformes
Subclass:	Teleostii
Class:	Teleostomi

Identifying Characters:	D1/8; P14-18; V9: A2/5 C2/19 L.I 22-27
	Length range 16 – 26cm Weight upto 2Kg
Distribution:	Pakistan, Punjab, Balochistan, KPK, Bangladesh, India, East Punjab, U.P, West Bengal; Assam, Nepal.
Colour:	Greenish above with light pink sides and silver white abdomen; fins reddish yellow.
Habitat:	Clear shallow stream with gravel bed foothill mountain area (500m – 2000m) altitude.
Morphometry:	Body elongated & stout. Head larger 22% of body length, Eyes smaller & embedded in anterior part of Head, Eyes seem larger in smaller fishes. Mouth larger & have large lips at anterior end. Surrounded by four barbels (two rostal & two maxillary).
	Dorsal fin located between anal & pelvic fins; pectoral fins are smaller.
	Body covered with larger scales.
Feeding:	Feeds on plankton, may hunt smaller fishes; become omnivorous; doesn't feed below 16°C under captivity. Never competes with carps species.
Habitat:	Streams, rivers & nullahs of sub-mountain area.
Breeding:	Spawns in clear slow flowing water having rocky & gravel sandy bottom during April to September.
	Eggs are yellowish, heavy & demersal for hatching (sehgal – 1981) measuring 2.8 upto 3.2mm.
	It breeds also in confined ponds and response to stripping with hypo-physation or without pituitary gland extract. Artificial breeding very successful in India & Nepal.
Significance:	Good taste food fish and excellent game fish, source of recreation to anglers. In commercial fishery it occupies an important position for its quality. It attracts higher price in market.

Annex – 4.3

ECONOMIC USE OF PLANTS (ETHNOBOTANICAL INVENTORY)

Sr. No.	Plant Species	Family	Local name	Medicinal	Ethno -Vet.	Fodder	Fuel	Timber	Agri. Imp.	Fruit	Vege- table	Weeds	Others
1	Abelmoschus esculentus (L.) Moench.	Malvaceae	Bhindi	\checkmark	-	\checkmark	\checkmark	-	-	-	\checkmark	-	-
2	Abies pindraw Royle.	Pinaceae	Chur	-	-	-		\checkmark	\checkmark	-	-	-	\checkmark
3	Achyranthes aspera L.	Amaranthaceae	Malkuni	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-
4	Adiantum capillus-veneris L.	Adiantaceae			-	-	-	-	-	-	-	-	\checkmark
5	Adiantum venustum D. Don	Adiantaceae	Jathoori		-	-	-	-	-	-	-	-	\checkmark
6	Ailanthus altissima (Mill.) Swingle	Simarubaceae	Darawa	-	-	\checkmark		-		-	-	-	\checkmark
7	Ajuga bracteosa Wall. ex Bth.	Lamiaceae			-	\checkmark	-	-	-	-	-	-	-
8	<i>Ajuga parviflora</i> Bth.	Lamiaceae			-	\checkmark	-	-	-	-	-	-	-
9	Alnus nitida Endl.	Betulaceae		-	-	\checkmark		-	-	-	-	-	\checkmark
10	Alternanthera pachyacantha	Aizoaceae		-	-	\checkmark	-	-	-	-	-	-	-
11	Alternanthera pungens Kunth.	Amaranthaceae		-	-	\checkmark	-	-	-	-	-		-
12	Amaranthus caudatus L.	Amaranthaceae	Ghanar		-	\checkmark	-	-	-	-	\checkmark		-
13	Amaranthus graecizense L.	Amaranthaceae		-	-	\checkmark	-	-	-	-	-		-
14	Amaranthus oleraceus L.	Amaranthaceae	Kas ghanar	-	-	\checkmark	-	-	-	-	-		-
15	Amaranthus viridis L.	Amaranthaceae	Ghanar	-	-	\checkmark	-	-	-	-	\checkmark		-
16	Anagallis arvensis L.	Primulaceae		-	-	\checkmark	-	-	-	-	-		-
17	Arabidopsis himalaica (Edgew.) O.E.S.	Brassicaceae		-	-	\checkmark	-	-	-	-	-	V	-
18	Aristida cyanatha Nees ex Steud.	Poaceae		-	-	\checkmark	-	-	-	-	-	-	-
19	Artemesia maritima L.	Asteraceae	Daroon		-	\checkmark		-	-	-	-	-	\checkmark

Sr. No.	Plant Species	Family	Local name	Medicinal	Ethno -Vet.	Fodder	Fuel	Timber	Agri. Imp.	Fruit	Vege- table	Weeds	Others
20	Asparagus filicinus BuchHam. ex D. Don	Asparagaceae	Zao	\checkmark	-	-	V	-	-	-	-	-	
21	<i>Astragalus candolleanus</i> Royle ex Benth.	Fabaceae	Chioo	-	-	V	V	-	-	-	-	-	-
22	Atriplex lasiantha Boiss.	Chenopodiacea e	Kiklohukbursa	-	-	\checkmark	-	-	-	-	-	-	-
23	Barleria acanthoides Vahl.	Acanthaceae		-	-	\checkmark	-	-	-	-	-	-	-
24	Barleria cristata L.	Acanthaceae		-	-	\checkmark	-	-	-	-	-	-	-
25	Bauhinia variegata L.	Caesalpiniaceae		\checkmark	-	\checkmark	\checkmark	-		-	\checkmark	-	\checkmark
26	Bergenia ciliata (Haw.) Sternb.	Saxifragaceae	Korat	\checkmark	-	\checkmark	-	-	-	-	-	-	
27	Bidens biternata (Lour.) Merr. & Sherff.	Asteraceae	Surbul	-	-	\checkmark	-	-	-	-	-	V	-
28	<i>Boerhavia procumbens</i> Banks ex Roxb.	Nyctaginaceae		-	-	\checkmark	-	-	-	-	-	-	-
29	<i>Bothriochloa bladhii</i> (Retz.) S.T Blake	Poaceae	Lhash	-	-	V	-	-	-	-	-	-	-
30	<i>Bothriochloa ischaemum</i> (L.) Keng	Poaceae	Lhash	-	-	\checkmark	Ι	_	-	-	-	-	-
31	<i>Brachiaria distachya</i> (L.) Stapf	Poaceae		-	-	\checkmark	-	-	-	-	-	\checkmark	-
32	<i>Brachiaria reptans</i> (L.) Gard. & C.E. Hubb.	Poaceae		-	-	\checkmark	-	-	-	-	-	V	-
33	Brousonetia papyrifera (L.) Vent.	Moraceae	Jangal murt	-	-	\checkmark	\checkmark	-	\checkmark	-	-	-	\checkmark
34	Calamintha umbrosa (M. Bieb.) Fisch. & Mey.	Lamiaceae	Bheroo rang	-	-	\checkmark	-	-	-	-	-	V	-
35	Calotropis procera (Willd.) R. Br.	Asclepiadaceae		\checkmark	-	\checkmark	\checkmark	-	-	-	-	-	\checkmark
36	Cannabis sativa L.	Cannabinaceae		\checkmark	-	\checkmark	-	-	-	-	-		-
37	Capparis spinosa L.	Capparidaceae	Kurr	-	-	\checkmark	\checkmark	-	-	-	-	-	
38	<i>Capsella bursa-pastoris</i> (L.) Medik	Brassicaceae		-	-		-	-	-	-	-	V	-
39	Carex chitralensis Nelmes Mag.	Cyperaceae	Zatch	-	-	\checkmark	\checkmark	-	-	-	-	-	

Sr. No.	Plant Species	Family	Local name	Medicinal	Ethno -Vet.	Fodder	Fuel	Timber	Agri. Imp.	Fruit	Vege- table	Weeds	Others
40	Carum carvi L.	Apiaceae	Zeera	\checkmark	-	\checkmark	-	-	-	-	-	-	\checkmark
41	<i>Cedrus deodara</i> (Roxb. Ex Lamb.) G. Don	Pinaceae	Beesh	-	-	-	V	\checkmark	\checkmark	-	-	-	\checkmark
42	Celtis australis L.	Ulmaceae	Makosh	-	-	\checkmark	\checkmark	-	-	-	-	-	-
43	Centella asiatica (L.) Urban	Apiaceae	Tikroo	\checkmark	-	\checkmark	-	-	-	-	-	-	-
44	Cheilanthus farinosa (Forssk.) Kaulf.	Pteridaceae		-	-	\checkmark	-	-	-	-	-	-	\checkmark
45	Chenopodium album L.	Chenopodiacea e	Kanwan	V	-	V	-	-	-	-	\checkmark	V	-
46	Chenopodium ambrosioides L.	Chenopodiacea e	Tahoo	\checkmark	-	\checkmark	\checkmark	-	-	-	-	\checkmark	-
47	Chenopodium botrys L.	Chenopodiacea e	Kunwan	-	-	\checkmark	-	-	-	-	-	-	-
48	Chenopodium cf. opulifolium Schrad. ex Koch & Ziz.	Chenopodiacea e		-	-	\checkmark	-	-	-	-	-	-	-
49	Chrozophora tinctoria (L.)Juss.	Euphorbiaceae		-	-	\checkmark	-	-	-	-	-	-	-
50	<i>Chrysopogon aucheri</i> (Boiss.) Stapf	Poaceae		-	-	V	-	-	-	-	-	-	-
51	Cirsium falconerii (Hk.f.) Petrak	Asteraceae	Jocho	-	-	\checkmark	-	-	-	-	-	-	-
52	Citrullus colocynthis (L.) Schrad.	Cucurbitaceae			\checkmark	\checkmark	\checkmark	-	-	-	-	-	\checkmark
53	Clematis montana Buch.	Ranunculaceae		-	-	\checkmark	-	-	-	-	-	-	-
54	Clematis nepalensis Royle	Ranunculaceae		-	-	\checkmark	-	-	-	-	-	-	-
55	Cleome viscosa L.	Capparidaceae		-	-	\checkmark	-	-	-	-	-		-
56	Commelina paludosa Bl. Enum.	Commelineace		-	-	\checkmark	-	-	-	-	-		-
57	Convolvulus arvensis L.	Convolvulaceae	Halor	-	-	\checkmark	-	-	-	-	-		-
58	Conyza aegyptica Ait.	Asteraceae		-	-	\checkmark	-	-	-	-	-		-
59	Conyza bonariensis L.	Asteraceae	Phuljoo	-	-	\checkmark	-	-	-	-	-	\checkmark	-
60	Conyza canadensis L.	Asteraceae	Panar tahoor	-	-	\checkmark	-	-	-	-	-	\checkmark	-
61	Coronopus didymus (L.) Sm.	Brassicaceae	Marchaki	-	-	\checkmark	-	-	-	-	-		-

Sr. No.	Plant Species	Family	Local name	Medicinal	Ethno -Vet.	Fodder	Fuel	Timber	Agri. Imp.	Fruit	Vege- table	Weeds	Others
62	Cotinus coggygria Scop.	Anacardiaceae	Khakoh/Shini	-	-	\checkmark	\checkmark	-	\checkmark	\checkmark	-	-	-
63	Cotoneaster affinins var. bacillaris (Lindl.) Schneider	Rosaceae	Luni	-	-	\checkmark	V	-	-	V	-	-	-
64	Cotoneaster microphylla Wall. ex Lindl.	Rosaceae	Kiur	-	-	\checkmark	\checkmark	-	-	\checkmark	-	-	-
65	<i>Cotoneaster nummularia</i> Fisher & Meyer	Rosaceae	Dudul	-	-	\checkmark	\checkmark	-	-	-	-	-	-
66	Cousinia thomsonii Clarke	Asteraceae		-	-	\checkmark	-	-	-	-	-	-	-
67	Cucumis melo var. agrestis Naud.	Cucurbitaceae		-	-	\checkmark	-	-	-	\checkmark	-	\checkmark	\checkmark
68	Cucurbita maxima Duch. ex Lam.	Cucurbitaceae		-	-	\checkmark		-	-	-		-	-
69	Cuscuta reflexa Roxb.	Cuscutaceae	Zhoo	-	-	\checkmark	-	-	-	-	-	-	-
70	<i>Cymbopogon distans</i> (Nees) W. Wats.	Poaceae	Kattal	-	-	\checkmark	-	-	-	-	-	-	-
71	Cynodon dactylon (L.) Pers.	Poaceae	Kabal	-	-	\checkmark	-	-	-	-	-	\checkmark	-
72	Cynoglossum lanceolatum Forssk.	Boraginaceae	Chiroo	-	-	\checkmark	-	-	-	-	-	-	-
73	Cyperus niveus Retz.	Cyperaceae		-	-	\checkmark	-	-	-	-	-	-	-
74	Cyperus rotundus L.	Cyperaceae		-	-	\checkmark	-	-	-	-	-	\checkmark	-
75	Dactyloctenium aegyptium L.	Poaceae	Sarkhoo gha	-	-	\checkmark	-	-	-	-	-	\checkmark	-
76	Dalbergia sissoo Roxb.	Fabaceae		-	-	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	\checkmark
77	Datura innoxia Mill.	Solanaceae		\checkmark	-	-		-	-	-	-	-	-
78	Datura stramonium L.	Solanaceae		\checkmark	-	-		-	-	-	-	-	-
79	<i>Debregeasia salicifolia</i> (D. Don) Rendle	Urticaceae	Chiroo	-	-	\checkmark	-	-	\checkmark	-	-	-	\checkmark
80	Dianthus crinitus Sm.	Caryophyllaceae		-	-	\checkmark	-	-	-	-	-	-	-
81	<i>Dichanthium annulatum</i> (Forssk.) Stapf	Poaceae		-	-	\checkmark	Ι	-	-	-	-	\checkmark	-
82	Dicliptera roxburghiana Nees	Acanthaceae		-	-	\checkmark	-	-	-	-	-	-	-
83	Digera muricata (L.) Mart.	Amaranthaceae		-	-	\checkmark	-	-	-	-	\checkmark	\checkmark	-

Sr. No.	Plant Species	Family	Local name	Medicinal	Ethno -Vet.	Fodder	Fuel	Timber	Agri. Imp.	Fruit	Vege- table	Weeds	Others
84	Digitaria sanguinalis (L.) Scop.	Poaceae		-	-	\checkmark	-	-	-	-	-	\checkmark	-
85	Diospyros lotus L.	Ebenaceae	Amlok	-	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	\checkmark
86	Dodonaea viscosa (L.) Jacq.	Sapindaceae	Shounth/Bajj	-	-	\checkmark		-	-	-	-	-	
87	Duchesnea indica (Andr.) Focke	Rosaceae		-	-	\checkmark	-	-	-	\checkmark	-	-	-
88	Echinochloa colona (L.) Link	Poaceae		-	-	\checkmark	-	-	-	-	-	\checkmark	-
89	Echinops cornigerus DC.	Asteraceae	Kuro	-	-	\checkmark	-	-	-	-	-	-	
90	Eclipta prostrata (L.) L.	Asteraceae			-	\checkmark	-	-	-	-	-	-	-
91	<i>Ephedra ciliata</i> Fisch. & Mey. ex C.A. Mey.	Ephederaceae	Ragaal	-	-	\checkmark	V	-	-	-	-	-	-
92	Ephedra intermedia Schrenk	Ephederaceae	Suo	-	-	\checkmark	\checkmark	-	-	-	-	-	\checkmark
93	<i>Eragrostis aterovirens</i> (Desf.) Trin. ex Nees	Poaceae		-	-	V	-	-	-	-	-	V	-
94	Eragrostis cilianensis (All.) Vig.	Poaceae		-	-	\checkmark	-	-	-	-	-	\checkmark	-
95	Eragrostis minor Host.	Poaceae		-	-	\checkmark	-	-	-	-	-	\checkmark	-
96	Eucalyptus lanceolatus	Myrtaceae		-	-	\checkmark	\checkmark	-	\checkmark	-	-	-	\checkmark
97	Euonymus pendulus Wall.	Celastraceae		-	-	\checkmark	\checkmark	-	-	-	-	-	-
98	Euphorbia granulata Forssk.	Euphorbiaceae		-	-	\checkmark	-	-	-	-	-	\checkmark	-
99	Euphorbia hirta L.	Euphorbiaceae		-	-	\checkmark	-	-	-	-	-	\checkmark	-
100	Euphorbia indica Lam.	Euphorbiaceae	Ispatre	-	-	\checkmark	-	-	-	-	-	\checkmark	-
101	Euphorbia kanorica Boiss.	Euphorbiaceae		-	-	\checkmark	-	-	-	-	-	-	-
102	Euphorbia prostrata (L.) Ait	Euphorbiaceae		-	-	\checkmark	-	-	-	-	-	\checkmark	-
103	Euphrasia himalayica Wettst.	Scrophulariacea e		-	-	\checkmark	-	-	-	-	-	-	-
104	Ficus carica L.	Moraceae	Pha	\checkmark	-	\checkmark	\checkmark	-	\checkmark	\checkmark	-	-	
105	<i>Fumaria indica</i> (Hausskn.) H.N. Pugsley	Fumariaceae		V	-	V	-	-	-	-	-	\checkmark	-
106	Gallium aparine L.	Rubiaceae		-	-	\checkmark	-	-	-	-	-	\checkmark	-

Sr. No.	Plant Species	Family	Local name	Medicinal	Ethno -Vet.	Fodder	Fuel	Timber	Agri. Imp.	Fruit	Vege- table	Weeds	Others
107	<i>Gentiana capitata</i> Ham. ex D. Don	Gentianaceae	Salaloo	-	-	V	-	-	-	-	-	-	-
108	Geranium rotundifolium L.	Geraniaceae		-	-	\checkmark	-	-	-	-	-	-	-
109	Geranium willichianum D. Don	Geraniaceae	Ratajot	-	-	\checkmark	-	-	-	-	-	-	-
110	Heliotropium europaeum L.	Boraginaceae		\checkmark	-	\checkmark	\checkmark	-	-	-	-		-
111	Heliotropium spp.	Boraginaceae	Dodosulo	-	-	\checkmark	-	-	-	-	-	-	-
112	Heteropogon contortus (L.) P. Beauv.	Poaceae		-	-	\checkmark	-	-	-	-	-	-	-
113	Impatiens edgeworthii Hook.f.	Scrophulariacea e		-	-	V	-	-	-	-	\checkmark	-	-
114	<i>Indigofera heterantha</i> Wall. Ex Brand	Fabaceae	Kachhi	-	V	V	V	-	-	-	-	-	-
115	Juglans regia L.	Juglandaceae	Achhoe	\checkmark	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	\checkmark
116	Juncus spp.	Juncaceae		-	-	\checkmark	\checkmark	-	-	-	-	-	-
117	<i>Kickxia ramosissima</i> (Wall.) Janchen	Scrophulariacea e		V	-	V	-	-	-	-	-	-	-
118	Lactuca auriculata (Wall. ex Dc.)	Asteraceae		-	-	\checkmark	-	-	-	-	-	\checkmark	-
119	Lactuca dissecta D. Don.	Asteraceae		-	-	\checkmark	-	-	-	-	-		-
120	Lactuca serriola L.	Asteraceae	Harool	-	-	\checkmark	-	-	-	-	-		-
121	<i>Lagenaria siceraria</i> (Molina) Standley	Cucurbitaceae		-	-	\checkmark	-	-	-	-	\checkmark	-	-
122	Lepidium pinnitifidum Ledeb.	Brassicaceae	Makoch	-	-	\checkmark	-	-	-	-	-	\checkmark	-
123	Lespedeza elegans Cambess.	Fabaceae		-	-	\checkmark	-	-	-	-	-	-	-
124	<i>Leucaena leucocephala</i> (Lam.) de-Wit	Mimosaceae		-	-	\checkmark	V	\checkmark	\checkmark	-	-	-	-
125	Luffa cylindrica (L.) Roem.	Cucurbitaceae		-	-	V	-	-	-	-	\checkmark	-	-
126	Malva neglecta Waller.	Malvaceae	Shani	-	-	\checkmark	-	-	-	-	\checkmark	\checkmark	-
127	Malva parviflora L.	Malvaceae	Zarooshal/Ma sha	-	-	\checkmark	-	-	-	-	\checkmark	\checkmark	-

Sr. No.	Plant Species	Family	Local name	Medicinal	Ethno -Vet.	Fodder	Fuel	Timber	Agri. Imp.	Fruit	Vege- table	Weeds	Others
128	Malvastrum coromendelianum L.	Malvaceae		-	-	V	-	-	-	-	-	\checkmark	-
129	<i>Maytenus royleanus</i> (Wall. ex Lawson) Cufodontis	Celastraceae	Phaikar	-	-	V	-	-	-	-	-	-	-
130	Medicago lupulina L.	Fabaceae		-	-	\checkmark	-	-	-	-	-	\checkmark	-
131	Melia azedarach L.	Meliaceae		\checkmark	-	\checkmark	\checkmark	-	\checkmark	-	-	-	-
132	Mentha longifolia (L.) Huds.	Lamiaceae	Feeru	\checkmark	-	V	-	-	-	-	-	-	\checkmark
133	Micromeria biflora (Ham.) Bth.	Lamiaceae	Kaldajar	-	-	\checkmark	-	-	-	-	-	-	-
134	Morus alba L.	Moraceae	Marath		-	\checkmark		\checkmark			-	-	\checkmark
135	Morus nigra L.	Moraceae			-	\checkmark		\checkmark			-	-	\checkmark
136	Myrtus communis L.	Myrtaceae	Amboo/Lachi		-	\checkmark		-	-		-	-	\checkmark
137	Nasturtium officinale R. Br.	Brassicaceae	Zalzaal		-	\checkmark	-	-	-	-	\checkmark	-	\checkmark
138	Nerium oleander L.	Apocynaceae		-	-	-	\checkmark	-	-	-	-	-	\checkmark
139	Olea ferruginea Royle	Oleaceae			-	\checkmark		-		-	-	-	\checkmark
140	Onopordum acanthium L.	Asteraceae	Zehech	-	-	V	-	-	-	-	-	-	\checkmark
141	Oxalis corniculata L.	Oxalidaceae	Chukoo	-	-	\checkmark	-	-	-	-	-		-
142	Parthenium hytserophorus L.	Asteraceae		-	-	\checkmark	-	-	-	-	-		-
143	<i>Paspalidium flavidum</i> (Retz.) A. Camus	Poaceae		-	-	\checkmark	-	-	-	-	-	V	-
144	Paspalum paspalodes (Michx.) Scribner	Poaceae		-	-	\checkmark	-	-	-	-	-	\checkmark	-
145	Pennesitum orientale L.	Poaceae		-	-	\checkmark	-	-	-	-	-	-	-
146	Periploca aphylla Decne.	Asclepiadaceae	Sui	-	-	\checkmark		-	-	-	-	-	\checkmark
147	Persicaria barbata (L.) Hara	Polygonaceae	Danduni	-	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark
148	Phalaris minor Retz.	Poaceae		-	-	\checkmark	-	-	-	-	-		-
149	<i>Phragmites australis</i> (Cav.) Trin.ex Steud.	Poaceae	Nai	-	-	\checkmark	\checkmark	-	-	-	-	-	
150	Phyla nodiflora (L.) Greene	Verbenaceae		\checkmark	-	\checkmark	-	-	-	-	-	\checkmark	-

Sr. No.	Plant Species	Family	Local name	Medicinal	Ethno -Vet.	Fodder	Fuel	Timber	Agri. Imp.	Fruit	Vege- table	Weeds	Others
151	Physalis peruviana L.	Solanaceae	Manakach	-	-	\checkmark	-	-	-	\checkmark	-	\checkmark	-
152	Pinus gerardiana Wall. non Lamb.	Pinaceae	Thulesh	\checkmark	-	-	\checkmark	\checkmark	\checkmark	\checkmark	-	-	\checkmark
153	Pinus roxburghii Sargent	Pinaceae	Chugi	-	-	-		-	-	-	-	-	
154	Pinus wallichiana A.B. Jackson	Pinaceae	Chhar	-	-	\checkmark		\checkmark	\checkmark	-	-	-	
155	Pistacia chinensis Bunge	Anacardiaceae	Kangar		-	\checkmark	\checkmark	-	\checkmark	-	-	-	
156	Plantago aitchisonii Pilger	Plantginaceae	Shileet	-	-	\checkmark	-	-	-	-	-	-	-
157	Plantago lanceolata L.	Plantginaceae	Shileet		-	\checkmark	-	-	-	-	-	-	-
158	Plantago ovata Frossk.	Plantginaceae	Shileet		-	\checkmark	-	-	-	-	-	-	-
159	<i>Plectranthus rugosus</i> Wall. ex Bth.	Lamiaceae	Salal	-	-	\checkmark	-	-	-	-	-	-	\checkmark
160	Poa annua L.	Poaceae		-	-	\checkmark	-	-	-	-	-	\checkmark	-
161	Polygonum affine D. Don	Polygonaceae	Banke	-	-	\checkmark	-	-	-	-	-		-
162	Polygonum effusum Meirsn.	Polygonaceae	Banke	-	-	\checkmark	-	-	-	-	\checkmark	\checkmark	-
163	Polygonum hydropiper L.	Polygonaceae		-	-	\checkmark	-	-	-	-	-	-	-
164	Polypogon fugax Nees ex Steud.	Poaceae		-	-	\checkmark	-	-	-	-	-		-
165	Polypogon monspeliensis (L.) Desf.	Poaceae		-	-	\checkmark	-	-	-	-	-	V	-
166	<i>Populus deltoides</i> Bartram ex Marsh.	Salicaceae	Sufaida	-	-	\checkmark	V	\checkmark	\checkmark	-	-	-	
167	Portulaca oleracea L.	Portulacaceae	Pishil	-	-	\checkmark	-	-	-	-	\checkmark	\checkmark	-
168	Prunus amygdalus Batsch	Rosaceae		\checkmark	-	\checkmark	\checkmark	-	\checkmark	\checkmark	-	-	\checkmark
169	Prunus armeniaca L.	Rosaceae	Ashae		-	\checkmark		-	\checkmark	\checkmark	-	-	
170	Prunus domestica L.	Rosaceae	Aroo		-	\checkmark		-	\checkmark	\checkmark	-	-	
171	Pteridium aquilinum (L.) Kuhn.	Pteridaceae		-	-	\checkmark	-	-	-	-	-	-	
172	Pteris crerica L.	Pteridaceae	Kuenz	-	-	\checkmark	-	-	-	-	-	-	
173	Pteris vittata L.	Pteridaceae	Kuenz	-	-	\checkmark	-	-	-	-	-	-	
174	Punica granatum L.	Punicaceae	Dangoo		-	\checkmark	\checkmark	-	\checkmark	\checkmark	-	-	

Sr. No.	Plant Species	Family	Local name	Medicinal	Ethno -Vet.	Fodder	Fuel	Timber	Agri. Imp.	Fruit	Vege- table	Weeds	Others
175	Pyrus communis L.	Rosaceae	Taango	-	-	V	\checkmark	-			-	-	\checkmark
176	Pyrus mallus L.	Rosaceae	Bhaap	\checkmark	-	\checkmark	\checkmark	-			-	-	\checkmark
177	Quercus baloot Griffith	Fagaceae	Bani/Jaand	\checkmark	-	\checkmark		\checkmark		-	-	-	\checkmark
178	Quercus dilatata Lindl. ex Royle	Fagaceae	Kagani/Zharyu n	-	-	\checkmark	V	\checkmark	\checkmark	-	-	-	
179	Rananculus scleratus L.	Rananculaceae		\checkmark	-	\checkmark	-	-	-	-	-	-	-
180	Rhus mysurensis Heyne ex Wight & Arn.	Anacardiaceae	Kasudur	-	-	V	V	-	-	-	-	-	\checkmark
181	Ribes alpestre Dcne. ex Jacq.	Rosaceae	Shigay	\checkmark	-	\checkmark		-	-	-	-	-	\checkmark
182	Ricinis communis L.	Euphorbiaceae		\checkmark	-	-	\checkmark	-	-	-	-	-	\checkmark
183	Robinia pseudoacacia L.	Fabaceae		-	-	V	\checkmark	-		-	-	-	\checkmark
184	Rubus ellipticus Smith	Rubiaceae	Gorash	-	-	\checkmark	\checkmark	-	-		-	-	\checkmark
185	Rumex dentatus L.	Polygonaceae		-	-	\checkmark	-	-	-	-	-		-
186	Rumex hastatus D. Don	Polygonaceae		-	-	\checkmark	\checkmark	-	-	-	-	-	\checkmark
187	Rumex nepalensis Spreng	Polygonaceae	Hababil	\checkmark	\checkmark	\checkmark		-	-	-	-	-	-
188	Saccharum ravennae (L.) Murray	Poaceae	Swar phuroo	-	-	\checkmark		-	-	-	-	-	\checkmark
189	Salix acmophylla Boiss.	Salicaceae	Chhubi	-	-	\checkmark		-	-	-	-	-	\checkmark
190	Salvia moorcroftiana Wall. ex Bth.	Lamiaceae		\checkmark	-	\checkmark	-	-	-	-	-	-	-
191	Saussurea albescens (DC.) Schr. Bip.	Asteraceae		-	-	\checkmark	-	-	-	-	-	-	-
192	Saussurea atkinsonii Clarke	Asteraceae		-	-	\checkmark	-	-	-	-	-	-	-
193	Saussurea heteromalla DC.	Asteraceae		-	-	V	-	-	-	-	-	-	-
194	Scorzonera virgata DC.	Asteraceae		-	-	\checkmark	-	-	-	-	-	-	-
195	Setaria glauca (L.) P. Beauv	Poaceae		-	-	\checkmark	-	-	-	-	-		-
196	Setaria viridis (L.). P. Beauv.	Poaceae	Pashtili	-	-	\checkmark	-	-	-	-	-		-
197	Silene conoidea L.	Caryophyllaceae		-	-	\checkmark	-	-	-	-	-		-
198	Solanum nigrum L.	Solanaceae		\checkmark	-	\checkmark	-	-	-	-	-	\checkmark	-

Sr. No.	Plant Species	Family	Local name	Medicinal	Ethno -Vet.	Fodder	Fuel	Timber	Agri. Imp.	Fruit	Vege- table	Weeds	Others
199	Solanum surattense Burm.f.	Solanaceae	Shuroo gae/mano gae	\checkmark	-	V	-	-	-	-	-	-	-
200	Solanum villosum (L.) Moench	Solanaceae		-	-	\checkmark	-	-	-	-	-	\checkmark	-
201	Sonchus arvensis f. brachyotus (DC.) Kirp.	Asteraceae		-	-	\checkmark	-	-	-	-	-	-	-
202	Sonchus asper (L.) Hill.	Asteraceae		-	-	\checkmark	-	-	-	-	-	\checkmark	-
203	Sonchus oleraceus L.	Asteraceae	Chuloor	-	-	\checkmark	-	-	-	-	-	\checkmark	_
204	Sorghum halepense (L.) Bern.	Poaceae		-	-	-	\checkmark	-	-	-	-		-
205	Stellaria media (L.) Cyr.	Caryophyllaceae		-	-	\checkmark	-	-	-	-	-		-
206	Tagetes minuta L.	Asteraceae		-	-	\checkmark	\checkmark	-	-	-	-	-	-
207	Tamarix aphylla (L.) Karst.	Tamaricaceae		-	-	-	\checkmark	-	-	-	-	-	\checkmark
208	Taraxacum officinale Weber.	Asteraceae	Palor	-	-	\checkmark	-	-	-	-	-	-	-
209	Taraxcum wallichii DC.	Asteraceae		-	-	\checkmark	-	-	-	-	-	-	-
210	Themeda anathera (Nees) Hack.	Poaceae	Furun	-	-	\checkmark	-	-	-	-	-	-	-
211	Thymus serphyllum	Lamiaceae	Isperki	-	-	\checkmark	-	-	-	-	-	-	\checkmark
212	Tragus biflorus Schult.	Poaceae		-	-	\checkmark	-	-	-	-	-	-	-
213	Tribulus longipetalus Viv.	Zygophyllaceae	Shiwo kuroo	-	-	\checkmark	-	-	-	-	-	-	-
214	Tribulus spp.	Zygophyllaceae	Shiwo kuroo	-	-	\checkmark	-	-	-	-	-	-	-
215	Tribulus terrestris L.	Zygophyllaceae	Shiwo kuroo	\checkmark	-	\checkmark	-	-	-	-	-		-
216	Trifolium repens L.	Fabaceae		-	-	\checkmark	-	-	-	-	-	-	-
217	Urtica dioica L.	Urticaceae	Jomi	-	-	-	-	-	-	-	\checkmark	-	-
218	Valeriana stracheyi	Valerianaceae	Koindaru	-	-	\checkmark	-	-	-	-	-	-	-
219	Valeriana wallichii DC.	Valerianaceae		-	-	\checkmark	-	-	-	-	-	-	-
220	Verbascum thapsus L.	Scrophulariacea e	Khardak/Kher os	\checkmark	-	\checkmark	V	-	-	-	-	-	-
221	Verbena officinalis L.	Verbenaceae	Chiroo	-	-	\checkmark	-	-	-	-	-	\checkmark	-
222	Veronica beccabunga L.	Scrophulariacea		-	-	\checkmark	-	-	-	-	-	-	-

Sr. No.	Plant Species	Family	Local name	Medicinal	Ethno -Vet.	Fodder	Fuel	Timber	Agri. Imp.	Fruit	Vege- table	Weeds	Others
		е											
223	Vitex negundo L.	Verbenaceae		\checkmark	-	\checkmark	\checkmark	-	-	-	-	-	\checkmark
224	Vitis himalyana	Vitaceae	Kuchar jachh	-	-	\checkmark	\checkmark	-	-	-	-	-	-
225	Vitis jaquemontii Parker	Vitaceae	Magrath	-	-	\checkmark	\checkmark	-	-	-	-	-	-
226	Vitis vinifera L.	Vitaceae	Jach	\checkmark	-	\checkmark	\checkmark	-	-	\checkmark	-	-	\checkmark
227	Withania coagulens Dunal	Solanaceae		\checkmark	-	-	\checkmark	-	-	-	-	-	-
228	Xanthium strumarium L.	Asteraceae	Kundi	-	-	-	\checkmark	-	-	-	-	\checkmark	-
229	Zizyphus sativa Gaertn	Rhamnaceae	Sizin/Sigiun	\checkmark	-	\checkmark	\checkmark	-	-	-	-	-	-
				57	5	213	78	13	30	21	16	74	67

Note: Out of 232, 229 species are subjected to some sort of use in the local area.

Annex – 4.4

DATA ON PASSERINE AND MIGRATORY BIRDS

Table 4.4.1: Non-passerines Birds Recorded from Dasu Project Area

S/No	Common Name	Scientific Name	Family	Status	Remarks
1.	Great or Eurasian Cormorant **	Phalacrocorax carbo sinensis	Phalacrocoracidae	A	Kandian river-shallow water
2.	Chukar *	Alectoris chukar	Phasianidae	С	8 observed Laachi Nallah on mountain slopes, reported from all the area from Dasu to Basha
3.	Grey Partridge/Francolin*	Francolinus pondicerianus	Phasianidae	С	Crossed the KKH near Kandian Suspended bridge; reported from Laachi nullah area
4.	Himalayan Monal*	Lophophorus impejanus	Phasianidae	R	Stuffed bird at Dasu town hunted from Kandian Valley few month ago; reported from Kaigah, Laachi, Sazin
5.	Western Tragopan*	Tragopan melanocephalus	Phasianidae	V	Reported from higher valleys of Kandian, Laachi, Sazin Kot, Kaigah
6.	Marsh harrier**	Circus aeruginosus	Accipitridae	С	Kandian Valley
7.	Black kite*	Milvus migrans	Accipitridae	A	Kandian valley, Shatial, Laachi
8.	Shikra *	Accipiter badius	Accipitridae	F	Laachi Nallah
9.	Common Kestrel*	Falco tinnunculus	Falconidae	С	Laachi, Kandian, Waliabad, Razika village, Down-stream near Zaid Khar Nullah
10.	Water rail**	Rallus aquaticus	Rallidae	F	Kandian Valley
11.	Red-wattled lapwing*	Vanellus indicus	Charadriidae	A	Couching Village
12.	Common sandpiper***	Actitis hypoleucos	Tringinae	С	Near Dasu on Right bank
13.	Blue rock pigeon*	Columba livia	Columbidae	A	Common from Kandian suspended bridge up to Basha
14.	Indian ring dove*	Streptopelia decaocto	Columbidae	A	Dasu, Kandian
15.	Oriental turtle dove*	Streptopelia orientalis	Columbidae	С	Kandian Valley
16.	Little brown dove*	Streptopelia senegalensis	Columbidae	A	Dasu, downstream before the Zaid Khar Nallah

S/No	Common Name	Scientific Name	Family	Status	Remarks
17.	Spotted dove***	Streptopelia chinensis	Columbidae	С	Dasu, Chochung
18.	Northern eagle owl*	Bubo bubo	Strigidae	F	Laachi Nallah area
19.	Common kingfisher*	Alcedo atthis	Apodidae	F	Kandian Valley
20.	Indian roller*	Coracias benghalensis	Meropidae	С	Chochung, Dasu
21.	Hoopoe*	Upupa epops	Upupidae	С	Waliabad, Chochung, Kandian valley
22.	Asian Koel***I	Eudynamys scolopacea	Cuculidae	С	Near Seo Village

*Resident; **Passage migrant; ***Summer breeder/wintering; A=Abundant; C=Common; F=Frequent; S=Scarce; V=Vulnerable; R=Rare (status described by Roberts, 1991, 1992)

Table 4.4.2: Passerines Birds Recorded from Kohistan area

S/No	Common Name	Scientific name	Family	Status	Remarks
1.	Crested lark*	Galerida cristate	Alaudidae	A	Waliabad, sandy and gravel area along left bank of Indus
2.	Yellow wagtail**	Motacilla flava	Motacillidae	С	Dasu
3.	Grey wagtail***	Motacilla cinera	Motacillidae	С	Melar
4.	White/pied wagtail***	Motacilla alba	Motacillidae	A	Summar Nallah, Kandian valley, Dasu, Laachi
5.	Large wagtail*	Motacilla maderaspatensis	Motacillidae	С	Kandian Valley, Dasu
6.	White-cheeked bulbul*	Pycnonotus leucogenys	Pycnonotidae	A	Melar, Panibagh, Chochung, Kandian Valley, Dasu
7.	Brown dipper*	Cinclus pallasii	Cinclidae	С	Kandian river –shallow river area
8.	Blue throat**/***	Luscinia svecia	Turdidae	F	Chochung, Kandian
9.	Indian blue robin**/***	Luscinia brunnea	Turdidae	С	Laachi nullah
10.	Blue-headed redstart***	Phoenicurus caeruleocephalus	Turdidae	С	Laachi nullah
11.	Black redstart***	Phoenicurus ochruros	Turdidae	С	Dasu, Kandian valley, Laachi

S/No	Common Name	Scientific name	Family	Status	Remarks
12.	White-bellied Redstart*	Hodgsonius phoenicuroides	Turdidae	S	Goshali Village-on left bank of supit nullah-downstream
13.	Plumbeous water Redstart***	Rhyacornis fuliginosus	Turdidae	С	Kandian river, Shallow water
14.	Common Stonechat**/***	Saxicola torquate	Turdidae	С	Laachi nullah
15.	Pied Bushchat*	Saxicola caprata	Turdidae	С	Kandian river's bank, Razika
16.	Rufous-tailed Rock Thrush**	Monticola saxatilis	Turdidae	R	Razika
17.	Blue whistling thrush***	Myiophoneus cacruleus	Turdidae	С	Dasu, Melar, Kandian valley, Barseen Nallah, Seo
18.	Eurasian blackbird*	Turdus merula	Turdidae	F	Near Pattan
19.	Grey-hooded flycatcher***	Seicercus xanthoschistos	Sylviidae	С	Melar, Chochung
20.	White-cheeked nuthatch*	Sitta leucopsis	Sittidae	С	Dasu, Shatial, Melar, Barseen Nallah, Chochung, Laachi, Kandian valley
21.	Eurasian nuthatch***	Sitta europaea	Sittidae	F	Sazin kot, Dasu
22.	Isabelline shrike ***	Lanius isbellinus	Laniidae	F	Dasu, Panibagh, Melar
23.	Bay-backed shrike*	Lanius vittatus	Laniidae	С	Dasu, Panibagh, Melar
24.	Jungle crow*	Corvus macrorhynchos	Corvidae	С	Common in all the area from Dasu to Basha
25.	House crow*	Corvus splendens	Corvidae	A	Around Dasu town
26.	Common Raven*	Corvus corax	Corvidae	F	Laachi, Kandian valley
27.	Lanceolated/Black- headed Jay*	Garrulus lanceolatus	Corvidae	F	Melar, Panibagh
28.	Yellow-billed Chough*	Phyrhocorax phyrhocorax	Corvidae	A	Razika village
29.	Common myna*	Acridotheres tristis	Sturnidae	A	Common in all the area from Dasu to Basha
30.	Jungle myna*	Acridotheres fuscus	Sturnidae	F	Choochang, Kandian, Laachi Nallah
31.	House sparrow *	Passer domesticus	Passeridae	A	Common in all the area from Dasu to Basha especially near human settlements

S/No	Common Name	Scientific name	Family	Status	Remarks
32.	Red-fronted serin*	Serinus pusillus	Carduelinae	A	Kandian valley, Razika village
33.	Rock bunting ***	Emberiza cia	Emberizinae	С	Chochung, Kandian, Laachi, Sazin
34.	Grey necked bunting***	Emberiza buchanani	Emberizinae	S	Kandian, Laachi
35.	Black Drongo*	Dicrurus macrocercus	Dicruridae	A	Dasu
36.	Great Tit*	Parus major	Paridae	С	Panibagh, Waliabad

*Resident; **Passage migrant; ***Summer breeder/wintering; A=Abundant; C=Common; F=Frequent; S=Scarce; V=Vulnerable; R=Rare (status described by Roberts, 1991, 1992)

Table 4.4.3: Aquatic/ Wetland Birds in Project Area¹

Sr./No	Common Name	Scientific name	Family	Remarks
1.	Great or Eurasian Cormorant	Phalacrocorax carbo sinensis	Phalacrocora- cidae	Kandia river-shallow water
2.	Water rail	Rallus aquaticus	Rallidae	Kandia Valley
3.	Red-wattled lapwing	Vanellus indicus	Charadriidae	Choochang Village
4.	Common sandpiper	Actitis hypoleucos	Tringinae	Near Dasu on Right bank
5.	Common kingfisher	Alcedo atthis	Alcedinidae	Kandia Valley
6.	White-breasted kingfisher	Halcyon smyrnesis	Alcedinidae	Near Dasu on Right bank
7.	Marsh harrier	Circus aeruginosus	Accipitridae	Kandia Valley
8.	Yellow wagtail	Motacilla flava	Motacillidae	Dasu
9.	Grey wagtail	Motacilla cinera	Motacillidae	Malyar
10.	White/pied wagtail	Motacilla alba	Motacillidae	Summar Nullah, Kandia valley, Dasu, Laachi

¹ Note:

¹⁻Species listed from 1-15 were recorded during field surveys conducted in July-September 2012

²⁻Analysis is completed for other potential wetland birds that are already reported to visiting/ staging/ migrating in this area and or they will likely be attracted to the large water body after the construction of the reservoir.

³⁻ It is anticipated that this list will continue to grow as information and data becomes available.

Sr./No	Common Name	Scientific name	Family	Remarks
11.	Large wagtail	Motacilla maderaspatensis	Motacillidae	Kandia Valley, Dasu
12.	Brown dipper	Cinclus pallasii	Cinclidae	Kandia river –shallow river area
13.	Black redstart	Phoenicurus ochruros	Turdidae	Dasu, Kandia valley, Laachi
14.	White-bellied Redstart	Hodgsonius phoenicuroides	Turdidae	Goshali Village-on left bank of supit nullah-downstream
15.	Plumbeous water Redstart	Rhyacornis fuliginosus	Turdidae	Kandia river, Shallow water
16.	Grey Heron	Ardea Cinerea	Ardeidae	Reported in secondary data/ literature. Further field surveys during migratory season/ winter may confirm their distribution/ occurrence
17.	Grelag Goose	Anser anser	Anatidae	Reported in secondary data/ literature. Further field surveys during migratory season/ winter may confirm their distribution/ occurrence
18.	Ruddy shelduck	Tadorna ferruginea	Anatidae	Reported in secondary data/ literature. Further field surveys during migratory season/ winter may confirm their distribution/ occurrence
19.	Wigeon	Anas penelope	Anatidae	Reported in secondary data/ literature. Further field surveys during migratory season/ winter may confirm their distribution/ occurrence
20.	Gadwall	Anas strepera	Anatidae	Reported in secondary data/ literature. Further field surveys during migratory season/ winter may confirm their distribution/ occurrence
21.	Common teal	Anas crecca	Anatidae	Reported in secondary data/ literature. Further field surveys during migratory season/ winter may confirm their distribution/ occurrence
22.	Mallard	Anas platyrynchos	Anatidae	Reported in secondary data/ literature. Further field surveys during migratory season/ winter may confirm their distribution/ occurrence
23.	Ferruginous duck	Aythya nyroca	Anatidae	Reported in secondary data/ literature. Further field surveys during migratory season/ winter may confirm their distribution/ occurrence
24.	Pintail	Anas acuta	Anatidae	Reported in secondary data/ literature. Further field surveys during migratory season/ winter may confirm their distribution/ occurrence
25.	Shoveler	Anas clypeata	Anatidae	Reported in secondary data/ literature. Further field surveys during migratory season/ winter may confirm their distribution/ occurrence
26.	Common Pochard	Aythya ferina	Anatidae	Reported in secondary data/ literature. Further field surveys during migratory season/ winter may confirm their distribution/ occurrence
27.	Tufted duck	Aythya fuligula	Anatidae	Reported in secondary data/ literature. Further field surveys during migratory season/ winter may confirm their distribution/ occurrence

Sr./No	Common Name	Scientific name	Family	Remarks
28.	Common crane	Grus grus	Gruidae	Reported in secondary data/ literature. Further field surveys during migratory season/ winter may confirm their distribution/ occurrence
29.	Demoiselle crane	Anthropoides virgo	Gruidae	Reported in secondary data/ literature. Further field surveys during migratory season/ winter may confirm their distribution/ occurrence
30.	Pheasant-tailed Jacana	Hydrophasianus chirugus	Jacanidae	Reported in secondary data/ literature. Further field surveys during migratory season/ winter may confirm their distribution/ occurrence
31.	Curlew sandpiper	Calidris ferruginea	Scolopacidae	Reported in secondary data/ literature. Further field surveys during migratory season/ winter may confirm their distribution/ occurrence
32.	Ruff	Philomachus pugnax	Scolopacidae	Reported in secondary data/ literature. Further field surveys during migratory season/ winter may confirm their distribution/ occurrence
33.	Common snipe	Gallinago gallinago	Gallinagininae	Reported in secondary data/ literature. Further field surveys during migratory season/ winter may confirm their distribution/ occurrence
34.	Red shank	Tringa tetanus	Tringinae	Reported in secondary data/ literature. Further field surveys during migratory season/ winter may confirm their distribution/ occurrence
35.	Green shank	Tringa nebularia	Tringinae	Reported in secondary data/ literature. Further field surveys during migratory season/ winter may confirm their distribution/ occurrence
36.	Marsh sandpiper	Tringa stagnatilis	Tringinae	Reported in secondary data/ literature. Further field surveys during migratory season/ winter may confirm their distribution/ occurrence
37.	Common sandpiper	Actitia hypoleucos	Tringinae	Reported in secondary data/ literature. Further field surveys during migratory season/ winter may confirm their distribution/ occurrence
38.	Caspian tern	Sterna caspica	Sternidae	Reported in secondary data/ literature. Further field surveys during migratory season/ winter may confirm their distribution/ occurrence
39.	Water pipit	Anthua spinoletta	Motacillidae	Reported in secondary data/ literature. Further field surveys during migratory season/ winter may confirm their distribution/ occurrence

ANNEX 4.5 TRAFFIC DATA ALONG KKG AND LOCAL ROADS

Table 4.5.1: Traffic Counts on Bridges on Indus (To and fro traffic from left bank to right bank)

								Vehicle	;				
Dates	Days	Location	Bicycle	Motor cycle	Car	Jeep	Loader/ Pick up	Van / Hiace	Coaster / Bus	Trucks	Heavy Loader	Tractor Trolley	Military Vehicles
01-06-12	Friday	Largani	0	14	34	3	2	3	0	0	0	0	0
02-06-12	Saturday	Kandia	0	0	36	2	32	0	0	0	0	0	0
03-06-12	Sunday	Tangir	1	31	66	6	8	15	0	7	0	0	2
03-06-12	Sunday	Shatial	0	122	67	35	5	16	0	5	0	2	0

						Liv	vestock		
Dates	Days	Location	Pedestrian	Cow	Buffalo	Goats / Sheep	Donkey / Mule	Horse	Other (Stray Animals)*
01-06-12	Friday	Largani	177	16	0	30	2	1	11
02-06-12	Saturday	Kandia	53	0	0	21	0	0	0
03-06-12	Sunday	Tangir	37	2	0	0	0	0	0
03-06-12	Sunday	Shatial	126	3	0	4	0	0	2

*Stray Dogs, Cats **Note:** Traffic survey for suspension bridges was conducted only for 12 hrs.

				Vehicle											
Dates	Days	Location	Bicycle	Motor cycle	Car	Jeep	Loader / Pick up	Van / Hiace	Coaster / Bus	Trucks	Heavy Loader	Tractor Trolley	Military Vehicles	Total Vehicle	
12-06-12	Tue	Pattan	0	54	122	46	64	65	5	64	30	1	0	451	
12-06-12	Tue	Besham	1	9	84	28	43	9	22	20	6	0	20	242	
13-06-12	Wed	Besham	8	207	1215	199	741	290	24	191	43	20	0	2938	
(13-14)-06- 2012	Wed - Thu	Thakot	15	214	413	191	282	180	103	363	126	113	103	2103	

Table 4.5.2: Traffic Count Survey in Pattan, Besham and Thakot on KKH

Note: Traffic count survey was done in Pattan for 6 hrs, Thakot for 24 hrs and in Besham it was done for 3 hrs in the night and 12 hrs in the day time.

Table 4.5.3: Traffic Count Survey of Jalkot Road, Dasu

							Vehicl	е				
Dates	Days	Bicycle	Motor cycle	Car	Jeep	Loader / Pick up	Van / Hiace	Coaster / Bus	Trucks	Heavy Loader	Tractor Trolley	Military Vehicles
08-06-12	Friday	6	58	272	50	59	46	0	0	0	4	0
09-06-12	Saturday	2	72	281	33	19	28	0	0	0	0	0
10-06-12	Sunday	0	54	267	25	30	10	0	0	0	0	0
	Total	8	184	820	108	108	84	0	0	0	4	0
	Average/Day	3	61	273	36	36	28	0	0	0	1	0

		Pedestrian				Livestock		
Dates	Days	Pedestrian	Cow	Buffalo	Goats / Sheep	Donkey / Mule	Horse	Other (Stray Animals)*
08-06-12	Friday	4317	33	16	222	27	13	37
09-06-12	Saturday	4308	24	0	373	14	4	28
10-06-12	Sunday	3148	6	0	337	13	0	38
	Total	11773	63	16	932	54	17	103
	Average/Day	3924	21	5	311	18	6	34

							Vehic	cle				
Dates	Days	Bicycle	Motor cycle	Car	Jeep	Loader / Pick up	Van / Hiace	Coaster / Bus	Trucks	Heavy Loader	Tractor Trolley	Military Vehicles
05-06-12	Tuesday	16	304	1082	410	500	489	127	295	50	11	15
06-06-12	Wednesday	16	298	997	223	479	381	167	338	63	67	44
07-06-12	Thursday	12	335	822	252	413	382	148	340	47	46	33
	Total	44	937	2901	885	1392	1252	442	973	160	124	92
	Average/Day	15	312	967	295	464	417	147	324	53	41	31

Table 4.5.4: Traffic Count Survey of Komila Bazar Entrance on KKH

		Pedestrian			L	ivestock		
Dates	Days	Pedestrian	Cow	Buffalo	Goats / Sheep	Donkey / Mule	Horse	Other (Stray Animals)*
05-06-12	Tuesday	3190	21	8	334	8	3	50
06-06-12	Wednesday	6025	6	2	195	5	3	47
07-06-12	Thursday	6290	16	18	328	17	4	50
	Total	15505	43	28	857	30	10	147
	Average/Day	5168	14	9	286	10	3	49

Table 4.5.5: Traffic Count Survey of Dasu near NATCO Hotel, 3km from Dasu Bridge

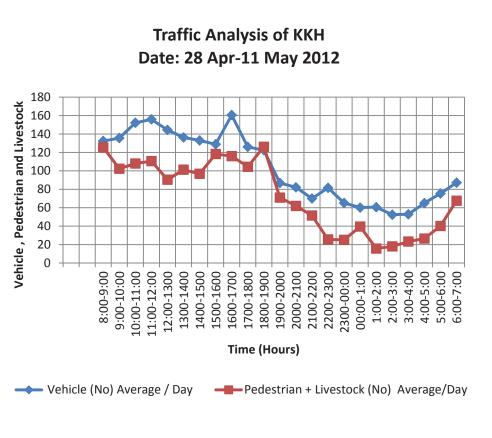
							Vehic	е				
Dates	Days	Bicycle	Motor cycle	Car	Jeep	Loader / Pick up	Van / Hiace	Coaster / Bus	Trucks	Heavy Loader	Tractor Trolley	Military Vehicles
4/28/2012	Saturday	9	242	649	251	256	216	201	383	58	2	25
4/29/2012	Sunday	22	246	795	357	383	340	253	547	106	0	37
4/30/2012	Monday	1	225	661	257	266	253	177	399	58	9	5
08-5-2012	Tuesday	1	184	654	274	344	244	161	403	50	17	18

	Davs						Vehicl	е				
Dates	Days	Bicycle	Motor cycle	Car	Jeep	Loader / Pick up	Van / Hiace	Coaster / Bus	Trucks	Heavy Loader	Tractor Trolley	Military Vehicles
5/9/2012	Wednesday	4	206	623	265	315	262	192	433	74	4	48
5/10/2012	Thursday	0	204	620	285	280	260	218	411	57	2	37
5/11/2012	Friday	6	276	600	244	284	247	228	428	157	23	50
	Total	43	1583	4602	1933	2128	1822	1430	3004	560	57	220
	Average/day	6	226	657	276	304	260	204	429	80	8	31
	Percentage	0	9	26	11	12	10	8	17	3	0	1

					Liv	vestock		
Dates	Days	Pedestrian	Cow	Buffalo	Goats / Sheep	Donkey/Mule	Horse	Other (Stray Animals)*
4/28/2012	Saturday	1218	52	0	60	55	3	70
4/29/2012	Sunday	1586	132	5	123	106	40	171
4/30/2012	Monday	1230	67	0	84	45	1	72
08-5-2012	Tuesday	1084	89	0	259	55	11	59
5/9/2012	Wednesday	1261	88	0	175	84	0	106
5/10/2012	Thursday	1187	70	2	186	80	12	111
5/11/2012	Friday	1426	133	0	401	134	2	148
	Total	8992	631	7	1288	559	69	737
	Average/day	1285	90	1	184	80	10	105
	Percentage	73	5	0	10	5	1	6

*Stray Dogs, Cats Note: Figures are accumulative traffic count (i.e. To Gilgit & from Gilgit)

		Vehicle												
Dates	Days	Bicycle	Motor cycle	Car	Jeep	Loader / Pick up	Van / Hiace	Coaster / Bus	Trucks	Heavy Loader	Tractor Trolley	Military Vehicles		
05-06-12	Tuesday	10	176	490	148	259	180	0	0	0	10	2		
06-06-12	Wednesday	0	158	434	143	218	175	0	0	0	10	0		
07-06-12	Thursday	0	158	574	213	293	285	0	0	0	12	0		
	Total	10	492	1498	504	770	640	0	0	0	32	2		
	Average/Day	3	164	499	168	257	213	0	0	0	11	1		


			Livestock											
Dates	Days	Pedestrian	Cow	Buffalo	Goats / Sheep	Donkey / Mule	Horse	Other (Stray Animals)*						
05-06-12	Tuesday	2694	12	6	32	4	0	27						
06-06-12	Wednesday	1313	12	13	43	6	2	19						
07-06-12	Thursday	1530	4	12	14	2	0	21						
	Total	5537	28	31	89	12	2	67						
	Average/Day	1846	9	10	30	4	1	22						

*Stray Dogs, Cats

Table 4.5.7: Traffic Count Statistics (Hourly Basis) – KKH Traffic Analysis

Date: 28 April to 11 May 2012

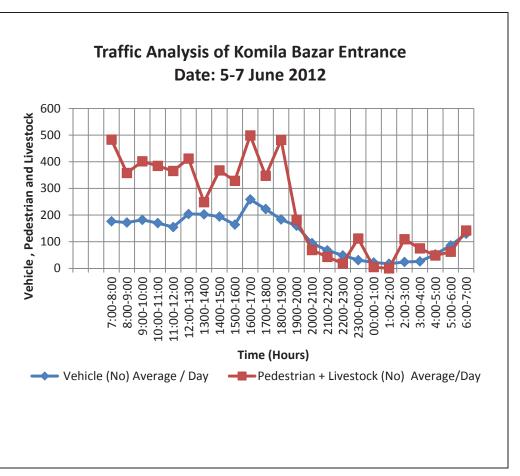

Hour	Vehicle (No) Average / Day	Pedestrian + Livestock (No) Average / Day
8:00-9:00	132	125
9:00-10:00	136	102
10:00-11:00	152	108
11:00-12:00	156	111
12:00-1300	144	90
1300-1400	136	101
1400-1500	133	97
1500-1600	129	118
1600-1700	161	116
1700-1800	126	104
1800-1900	122	126
1900-2000	87	71
2000-2100	82	62
2100-2200	70	52
2200-2300	82	26
2300-00:00	65	25
00:00-1:00	60	40
1:00-2:00	61	16
2:00-3:00	52	18
3:00-4:00	53	23
4:00-5:00	65	27
5:00-6:00	75	40
6:00-7:00	87	68
7:00-8:00	123	95

Table 4.5.8: Traffic Count Statistics (Hourly Basis) – Komila Bazar Entrance Traffic Analysis

Date: 5 to 7 June 2012

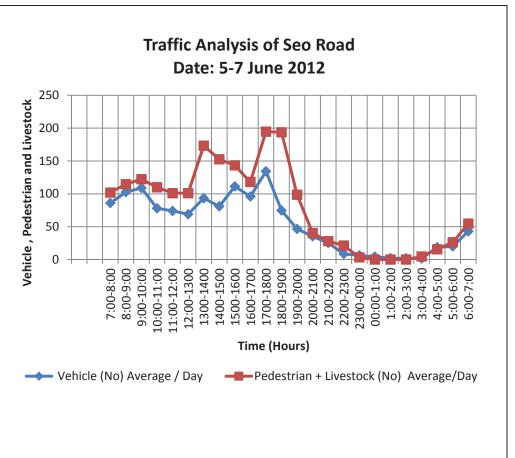

Hour	Vehicle (No) Average / Day	Pedestrian + Livestock (No) Average / Day							
7:00-8:00	177	483							
8:00-9:00	172	358							
9:00-10:00	182	402							
10:00-11:00	170	385							
11:00-12:00	155	365							
12:00-1300	204	412							
1300-1400	203	248							
1400-1500	194	367							
1500-1600	164	328							
1600-1700	259	499							
1700-1800	223	347							
1800-1900	183	482							
1900-2000	160	183							
2000-2100	95	69							
2100-2200	68	43							
2200-2300	49	18							
2300-00:00	31	112							
00:00-1:00	22	5							
1:00-2:00	17	0							
2:00-3:00	24	109							
3:00-4:00	26	75							
4:00-5:00	52	48							
5:00-6:00	86	62							
6:00-7:00	130	142							

Table 4.5.9: Traffic Count Statistics (Hourly Basis) – Seo Road Traffic Analysis

Date: 5 to 7 June 2012

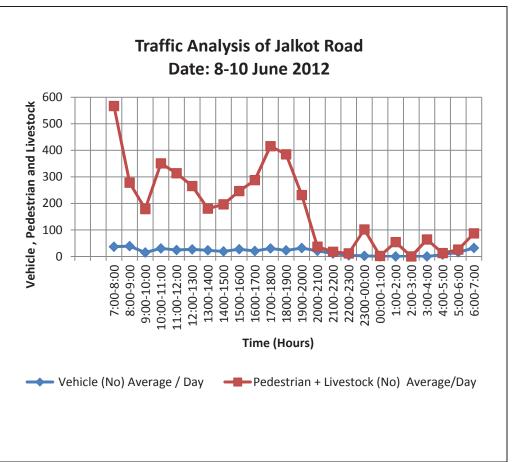

Hour	Vehicle (No) Average / Day	Pedestrian + Livestock (No) Average / Day							
7:00-8:00	86	102							
8:00-9:00	103	115							
9:00-10:00	109	122							
10:00-11:00	78	110							
11:00-12:00	74	101							
12:00-1300	69	101							
1300-1400	93	173							
1400-1500	81	153							
1500-1600	111	143							
1600-1700	96	118							
1700-1800	134	195							
1800-1900	75	194							
1900-2000	47	99							
2000-2100	35	40							
2100-2200	25	28							
2200-2300	9	21							
2300-00:00	6	3							
00:00-1:00	4	0							
1:00-2:00	2	0							
2:00-3:00	2	0							
3:00-4:00	2	5							
4:00-5:00	19	16							
5:00-6:00	20	26							
6:00-7:00	43	55							

Table 4.5.10: Traffic Count Statistics (Hourly Basis) – Jalkot Road Traffic Analysis

Date: 8 to 10 June 2012

Hour	Vehicle (No) Average / Day	Pedestrian + Livestock (No) Average / Day						
7:00-8:00	37	567						
8:00-9:00	39	278						
9:00-10:00	15	179						
10:00-11:00	30	351						
11:00-12:00	24	314						
12:00-1300	27	265						
1300-1400	23	180						
1400-1500	19	196						
1500-1600	27	246						
1600-1700	21	288						
1700-1800	30	416						
1800-1900	23	385						
1900-2000	32	231						
2000-2100	21	37						
2100-2200	11	18						
2200-2300	4	12						
2300-00:00	2	102						
00:00-1:00	0	2						
1:00-2:00	0	54						
2:00-3:00	0	0						
3:00-4:00	0	64						
4:00-5:00	7	13						
5:00-6:00	16	26						
6:00-7:00	32	87						

Table 4.5.11: Traffic Count Statistics (Hourly Basis) – Thakot Bridge Traffic Analysis

Date: 13 June 2012

Hour	Total Vehicles																							
12:00-1300	142						_		-			_												
1300-1400	136	Traffic Count Analysis of Thakot																						
1400-1500	205	13-06-2012																						
1500-1600	217																							
1600-1700	154	250)																					
1700-1800	37	200																						
1800-1900	116	200	, 💷																					
1900-2000	82					<pre>/ ` ``</pre>																		
2000-2100	95	No) 150 reprices 100	, ⊥⊥																					
2100-2200	66	es (┥																			
2200-2300	92	<u>ب</u> 100	, 💷						$\mathbf{\Lambda}$															
2300-00:00	26	Kel																			\checkmark			
00:00-1:00	40	50						\mathbf{M}				♥												
1:00-2:00	43		,					¥																
2:00-3:00	60	C																						
3:00-4:00	32			0	0 9	່ວ່ວ	0	0	0	0	0				0	0	0 9		0		0	0	0	0
4:00-5:00	15	j		12:00-1300	1300-1400	1400-1500 1500-1600	1600-1700	1700-1800	1800-1900	1900-2000	2000-2100	2100-2200	00.00-0022	00:00-1:00	1:00-2:00	2:00-3:00	3:00-4:00	4:00-6:00	6:00-7:00	7:00-8:00	8:00-9:00	9:00-10:00	10:00-11:00	11:00-12:00
5:00-6:00	55			-00	00		-00	-00	-00	-00	-00	00		ŚŚ	00:	Ö	0000		Ö	00	00	0-1	01	0-1
6:00-7:00	66	j		12:	13	15 15	16	17	18	19	20	21	720	00	1	7	ŝ	4 0	9		00	9:6	10:0	11:(
7:00-8:00	95	j										Tin	ne (H	Irs)										1
8:00-9:00	76	j											10 (1											
9:00-10:00	124	j																		-		Tota	l Ve	hicle
10:00-11:00	125	j																						
11:00-12:00	107																							

Annex – 5.1

ANALYSIS OF ALTERNATIVES FOR WATERWAYS (INTAKE & TAILRACE TUNNELS)

Three alternatives were considered for waterways (intake and tail race tunnels) in Feasibility Study and an alternative that produces significantly greater energy than the other alternatives was recommended. However the feasibility study did not evaluate the impact of Khoshe fault on the location of the power house and its stability – though Khoshe fault which is crossing at the mid of the tailrace tunnel is not an active fault and would not be seriously weak nor fractured. During detailed design, the feasibility study alternative (Alternative 1) is further compared with 3 more possible alternatives. Plan and profile of all these 3 alternatives are presented in Figure 1 (Alternative 1, feasibility alignment), Figure 2 (Alternative 2); Figure 3 (Alternative 3) and Figure 4 (Alternative 4).

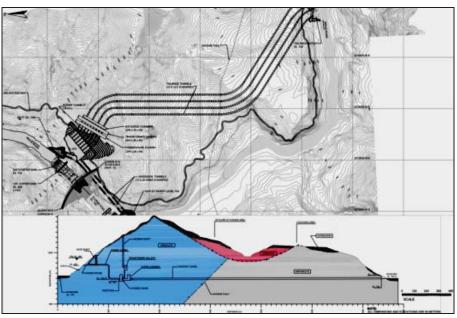


Figure 1: Waterway Plan and Profile of Alternative 1 (Feasibility Alignment)

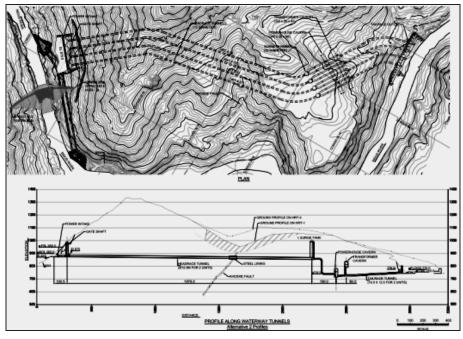


Figure 2 : Waterway Plan and Profile of Alternative 2

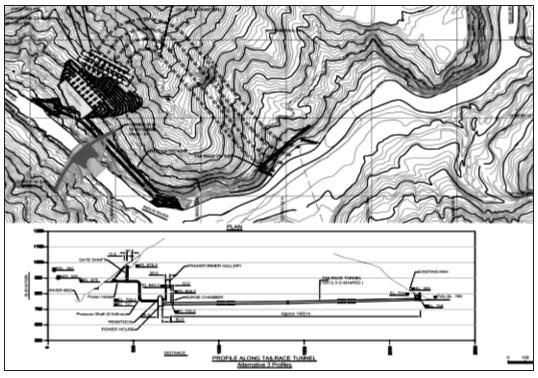


Figure 3: Waterway Plan and Profile of Alternative 3

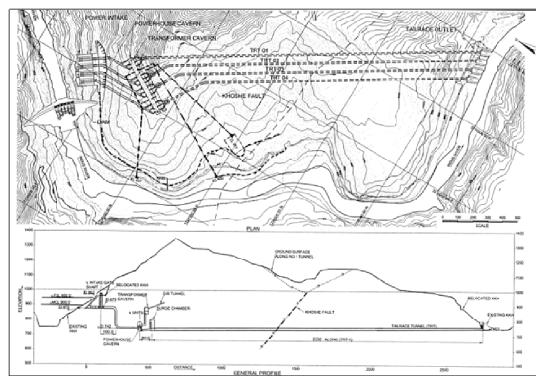


Figure 4: Waterway Plan and Profile of Alternative 4

The analysis of all four alternatives is presented in Table 1. Alternative 1 is a recommendation of feasibility study, in which power house is located .on the upstream side of the Khoshe fault and tail race tunnel crosses the fault. In Alternative 2, the power house is located on the downstream of the fault. Alternative 3 completely avoids crossing any facility through the fault. Alternative 4 is a slight modification of Alternative 1, in which the tail race tunnels are straight without any bend.

	Alternative 1								
	(FS Alternative)	Alternative 2	Alternative 3	Alternative 4					
Location with respect to Khoshe fault	Recommended by Feasibility Study. Intake and powerhouse complex is located in the left abutment of dam and its tailrace tunnels are extended downstream by 2.7 km from the power cavern. The tail race tunnels cross the Khoshe fault some 1.2 km downstream of the underground powerhouse	Intake location is similar to Alternative 1, but the power house is located on the downstream of Khoshe fault. Headrace tunnels cross the fault	Location of intake and powerhouse complex is identical to the above Alternative I. However, the tailrace tunnels are shortened to the average length of 1.4 km in order to avoid the tunnels crossing through the Khoshe fault. Outlets of the tailrace tunnels are located immediate upstream of the Khoshe fault on the left bank.	Similar to Alternative 1 in terms of intake location, but the headrace tunnel is extended to 500. The tail race tunnels are straight and crosses Khoshe fault					
Length of water ways	2885 km (0.26 km headrace and 2.625 km tail race)	2.57 km (1.97 km headrace and 0.6 km tail race)	1.66 km (0.26 km headrace and 1.4 km tail race)	2.7 km (0.5km head race and 2.2 km of tail race0					
Linearity of the Waterways	Have a 60° horizontal bend aiming at avoiding sharp angle crossing with rock discontinuity planes.	Have a bend.	Curved	Straight, waterway for hydropower generation should be straight as much as possible to minimize head loss in the waterway, provided that rock conditions along the tunnels are good enough for tunneling					
Power generation capacity (including gross head)	4320 MW 195m (FSL is 950 m and tunnel outlet level is 755m)	Similar to Alternative 1	4070 MW 181 (FSL is 950 m and tunnel outlet level is 769m)	Similar to Alternative 1					
Protection against Khoshe fault	The tunnels cross the Khoshe fault but water leak to the surrounding fault zone will not occur because internal water pressure will be lower than	The tailrace tunnels receiving internal water pressure of 100 m head have to pass through Khoshe fault where minimum depth of ground	No protection is required since tunnels are not crossing the fault	Similar to Alternative 1. Based on the geological surveys conducted during detailed design, it was found that is					

Table 1: Alternatives for Waterways

	Alternative 1 (FS Alternative)	Alternative 2	Alternative 3	Alternative 4
	surrounding ground water pressure which is at least greater than water column pressure measured below the nearby river water level.	cover over the tunnel is only 100 m. To prevent water leak to ground surface in the fault zone, the tunnels need to be steel-lined in a certain section (say 100 m).		a normal contact of rock types or an inactive fault with limited displacement. Hence Khoshe fault will not affect any alternatives
Surge shafts	No upstream surge shaft is required because of short tunnel between turbine and intake. Tailrace surge shafts or chambers are required to dampen surge waves as the tailrace tunnels are long.	Because of long pressure tunnel between turbines and intake, upstream surge shaft is required to mitigate water hammer pressure and dampen surge waves.	No upstream surge shaft is required. On the downstream side, Since tailrace tunnels are still not sufficiently short, surge chamber is required in tailrace but size of the chamber can be much smaller than Alt. I.	Similar to Alternative 1
Cost Total Base price of the Project (million dollars)	Less than Alternative 2 5204.6	Higher 5462.7 (5% higher than Alternative 1)	Lower 4988.8 (4.1% less than alternative 1) owing to shorter length of the water way	Less than Alternative 1 5051 (3% less than Alternative 1
Conclusion				Since Khoshe fault is not active, final alternative was chosen based on economic evaluation. Alternative 4 is preferable since it is more economical than alternative 1 with shorter and straight tunnels.

Annex – 6.1

METHODOLOGY FOR CALCULATIONS OF GHG EMISSIONS FROM DHP

GHG emissions are calculated in accordance with the revised 2006 Intergovernmental Panel on Climate Change (IPCC) Guidelines for National GHG Inventories. These Guidelines contain a description of inventory methodologies and comprehensive emission factors for all major sources and interventions. The inventory is divided into following four main categories and each of these categories is further subdivided within the inventory.

- Energy
- Industrial Processes and Product Use
- Agriculture, Forestry and Other Land Use
- Waste

6.1.1 During Construction

The IPCC methodology breaks the calculation of emissions (e.g., for carbon dioxide) from fuel combustion into 6 steps:

Step 1: Estimate Apparent Fuel Consumption in Original Units
Step 2: Convert to a Common Energy Unit
Step 3: Multiply by Emission Factors to Compute the Carbon Content
Step 4: Compute Carbon Stored
Step 5: Correct for Carbon Unoxidized
Step 6: Convert Carbon Oxidized to CO₂ Emissions

A yearly inventory of the following direct and indirect GHGs is prepared up to 2019 when the dam construction will be completed and first stage of hydropower plant will start commissioning.

- Carbon Dioxide (CO₂)
- Methane (CH₄)
- Nitrous Oxide (N₂O)
- Non Methane Volatile Organic Compounds (NMVOC).

The data used for the estimation of emissions has been collected from the following sources.

- Traffic counts data and traffic forecast
- Area of the asphalt pavement and the quantity of the bitumen
- Fuel consumption by type of vehicles
- Type, number and usage rate of construction vehicles and corresponding fuel consumption.

As standard emission factors (EF) are not established for Pakistan, emission factors for stationary and mobile combustion, fugitive emissions, in the inventory have been developed using the default values given in IPCC guidelines.

6.1.2 During Operation

GHG emissions during operation stage are also calculated using methodology proposed in 'Agriculture, Forestry and other Land Use' in IPCC 2006 Guidelines. In Agriculture, Forestry, and Other Land use category, there are two appendices, which cover, (a) Appendix 2: Possible Approach for Estimating CO_2 Emissions from Lands Converted to Permanently Flooded Lands: Basis for Future Methodological Development (updated in November 2008) and (b) Appendix 3: CH₄ Emissions from Flooded Land: Basis for Future Methodological Development.

IPCC basis for Future Methodological Development indicates that flooded land may emit CH₄ in significant quantities, depending on a variety of characteristic such as age

and depth of reservoirs, land-use prior to flooding, climate, and management practices. In contrast with CO_2 emissions, CH_4 emissions are highly variable spatially and temporally. Current measurements of CH_4 fluxes from Flooded Land are not sufficiently comprehensive to support the development of accurate default emission factors (especially for bubbles emissions and degassing emissions), however, there are fairly good information for diffusive emissions.

IPCC basis for Post-flooded CH₄ emissions can occur via the following pathways:

- Diffusive emissions, due to molecular diffusion across the air-water interface;
- Bubble emissions, or gas emissions from the sediment through the water column via bubbles; this is a very important pathway for CH₄ emissions, especially in temperate and tropical regions;
- Degassing emissions, or emissions resulting from a sudden change in hydrostatic pressure, as well as the increased air/water exchange surface after reservoir waters flow through a turbine and/or a spillway; this is a very important pathway for CH₄ emissions from young tropical reservoirs.

Methane can be emitted from flooded lands through release of bubbles, by diffusion and by degassing. A decision tree is normally used through the processes of selecting an appropriate approach for CH_4 emissions from Flooded Land. Tier selection and the level of spatial and temporal disaggregation implemented by inventory compilers will depend upon the availability of activity data and emission factors, as well as the importance of reservoirs as contributors to national greenhouse gas emissions. Due to the lack of sufficient data and information Tier 1 default data is used in this study (which is also used for country-specific scientific evidence and data). In Tier 1 approach the following equation is used for estimating CH_4 emission:

$$CH_4 Emission_{WW flood} = P^*E(CH_4)_{diff} *A_{flooded_total_surface} *10^{-6}$$

Where,

 CH_4 emission_{WWflood} = total CH_4 emissions from Flooded Land, Gg of CH_4 /year P = ice-free period, days/year (usually 365 for annual inventory estimates, or less in country with ice-cover period)

E(CH4)_{diff} = averaged daily diffusive emissions, kg CH₄/ha/day

A_{flooded_total surface} = total flooded surface area, including flooded land, lakes and rivers, ha.

On the other hand IPCC basis for post-flooded carbon dioxide emissions from Land Converted to Flooded Land can occur via the following pathways:

- Diffusive Emissions, due to molecular diffusion across the air-water interface; this is the major pathway for CO₂ emissions;
- Bubble Emissions, or gas emissions from the sediment through the water column via bubbles; this is a very minor pathway for CO₂ emissions;
- Degassing Emissions, or emissions resulting from a sudden change in hydrostatic pressure, as well as the increased air/water exchange surface after reservoir waters flow through a turbine and/or a spillway.

Evidence suggests that CO_2 emissions for approximately the first ten years after flooding are the results of decay of some of the organic matter on the land prior to flooding. The easily degradable carbon and nutrients are made available to producer organisms upon flooding and metabolized. Beyond this time period, CO_2 emissions are sustained by the input of organic material transferred into the flooded area from the watershed. Three methods of increasing sophistication called Levels 1, 2 and 3 are used to estimate CO_2 emissions from flooded reservoir. In Levels 1 and 2 diffusive emissions are estimated only. A level 3 method, based on detailed measurements, includes all relevant fluxes of carbon dioxide emissions from flooded lands. Level 3 includes degassing emissions and considers the age, and the geographical location and the water temperature of the reservoir. When using Level 3, all relevant emissions from flooded lands should be estimated for the life-time of the reservoir. Due to the lack of data, Level 2 estimate is used in this study for the CO_2 emission from the flooded reservoir created by the construction of the dam in the project. Under Level 2, country-specific emission factors are used to estimate CO_2 diffusive emissions. In Level 2, CO_2 emissions can be estimated from reservoirs following the approach shown in the following Equation. The IPCC basis states that CO_2 emissions from Land Converted to Flooded Land should be estimated only for ten years after flooding when using Level 2 method unless country-specific research indicates otherwise.

 $CO_2 \text{ Emission}_{LWflood} = [\{P_f * E_f (CO_2)_{diff} + P_i * E_i (CO_2)_{diff}\} * (A_{flood.surface} * f_A * 10^{-6})]$

Where:

 CO_2 Emission_{LW flood} = total CO_2 emissions from Land Converted to Flooded Landed, Gg CO_2 /yr

 P_f = ice-free period, days/yr

 P_i = period with ice cover, days/yr

 $E_{f}(CO_{2})_{diff}$ = averaged daily diffusive emission from air water-interface during the ice free period, kg CO₂/ha/day

 $A_{\text{flood}.\text{surface}}$ = total reservoir surface area, including flooded land, lakes, and rivers, ha

 f_A = fraction of the total area flooded within the last years

Annex – 7.1

EMISSION FACTORS FOR CONSTRUCTION EQUIPMENT

Environment	Emission Factors (lb/hr)									
Equipment	ROG	CO	NOX	SOX	PM	CO2	CH4	N2O		
Concrete Mixer										
Concrete Static Mixer 0.25 M3	0.0075	0.0386	0.0475	0.0001	0.0023	6.3	0.0007	0.0003048		
Concrete Static Mixer 0.191 M3	0.0293	0.0852	0.1548	0.0002	0.0091	18	0.0026	0.0011914		
Concrete Vibrator	0.0075	0.0386	0.0475	0.0001	0.0023	6	0.0007	0.0003048		
Concrete Batching Plant (Computerized)										
Concrete Batching Plant Capacity 30 M3	0.1927	0.5215	0.4545	0.0006	0.0462	44.0	0.0174	0.0078241		
Concrete Batching Plant Capacity 50 M3	0.1927	0.5215	0.4545	0.0006	0.0462	44.0	0.0174	0.0078241		
Batch/Mix RCC Plant 500 m3/hr	0.1525	0.5829	0.9172	0.0010	0.0851	83.1	0.0138	0.0061903		
Asphalt Plant										
Capacity 20 Ton	0.1927	0.5215	0.4545	0.0006	0.0462	44.0	0.0174	0.0078241		
Capacity 80 Ton	0.1927	0.5215	0.4545	0.0006	0.0462	44.0	0.0174	0.0078241		
Aggregate Plant & Sand Plant										
Screening Plant 1500 ton/hr	0.1104	0.5320	0.7540	0.0009	0.0633	80.9	0.0100	0.0044826		
Course Aggregate Crush/Screen Plant 650	0.2088	0.9654	1.6343	0.0019	0.0946	167	0.0188	0.0084765		
ton/hr										
Sand Plant 300 ton/hr	0.1525	0.5829	0.9172	0.0010	0.0851	83.1	0.0138	0.0061903		
Coarse Precooling Plant 350 ton/Rfrg	0.0160	0.0544	0.1019	0.0002	0.0044	13.2	0.0014	0.0006508		
Bull-Dozer										
CAT D-7	0.2545	0.7124	2.1985	0.0021	0.0942	183.5	0.0230	0.0103347		
CAT D-8	0.2545	0.7124	2.1985	0.0021	0.0942	183	0.0230	0.0103347		
CAT D-9	0.2545	0.7124	2.1985	0.0021	0.0942	183	0.0230	0.0103347		
Komatsu D-155	0.2545	0.7124	2.1985	0.0021	0.0942	183.5	0.0230	0.0103347		
Komatsu D-85	0.2545	0.7124	2.1985	0.0021	0.0942	183	0.0230	0.0103347		
Bull-Dozer 90 HP	0.2209	0.8528	1.6304	0.0015	0.0945	129	0.0199	0.0089691		
Bull-Dozer 120 HP	0.2209	0.8528	1.6304	0.0015	0.0945	129.5	0.0199	0.0089691		
Bull-Dozer 200 HP	0.2545	0.7124	2.1985	0.0021	0.0942	183	0.0230	0.0103347		
Front End Loader										

F animan t	Emission Factors (lb/hr)									
Equipment	ROG	CO	NOX	SOX	PM	CO2	CH4	N2O		
Front End Loader 1.5 M3	0.1045	0.4187	0.6404	0.0007	0.0576	58.9	0.0094	0.0042419		
Front End Loader 2.5 M3	0.1312	0.6288	1.0135	0.0012	0.0583	106	0.0118	0.0053287		
Front End Loader 3.00 M3	0.1330	0.3838	1.3129	0.0017	0.0462	149	0.0120	0.0054		
Grader										
GAT G-140	0.1554	0.7363	1.1931	0.0014	0.0688	124	0.0140	0.0063098		
GAT G-14	0.1554	0.7363	1.1931	0.0014	0.0688	124	0.0140	0.0063098		
GAT G-120	0.1554	0.7363	1.1931	0.0014	0.0688	124	0.0140	0.0063098		
Volvo	0.1554	0.7363	1.1931	0.0014	0.0688	124	0.0140	0.0063098		
Komatsu GC 705	0.1554	0.7363	1.1931	0.0014	0.0688	124	0.0140	0.0063098		
Komatsu GC 605	0.1554	0.7363	1.1931	0.0014	0.0688	124	0.0140	0.0063098		
Motor Grader 140 HP	0.1348	0.5355	0.8223	0.0009	0.0740	75.0	0.0122	0.0054736		
Motor Grader 165 HP	0.1554	0.7363	1.1931	0.0014	0.0688	124	0.0140	0.0063098		
Welding Plant										
Welding Plant Unit	0.1071	0.2854	0.2637	0.0003	0.0260	26.0	0.0097	0.004348		
Local Welding Plant	0.1071	0.2854	0.2637	0.0003	0.0260	26.0	0.0097	0.004348		
Road Roller										
Tandem Roller (10 Ton to 12 Ton)	0.0392	0.3801	0.2647	0.0007	0.0137	59.0	0.0035	0.0015925		
Tandem Vibratory Roller 1.5 Ton	0.0392	0.3801	0.2647	0.0007	0.0137	59.0	0.0035	0.0015925		
Tandem Vibratory Roller 6 Ton	0.0392	0.3801	0.2647	0.0007	0.0137	59.0	0.0035	0.0015925		
Tandem Vibratory Roller 8 Ton	0.0392	0.3801	0.2647	0.0007	0.0137	59.0	0.0035	0.0015925		
Static Tandem Roller 8 Ton	0.0392	0.3801	0.2647	0.0007	0.0137	59.0	0.0035	0.0015925		
Static Tandem Roller 12 Ton	0.0553	0.6096	0.3030	0.0012	0.0156	108	0.0050	0.002245		
Combination Roller 10-12 Ton	0.0553	0.6096	0.3030	0.0012	0.0156	108	0.0050	0.002245		
Combination Roller 18 Ton	0.0553	0.6096	0.3030	0.0012	0.0156	108	0.0050	0.002245		
Water Bouzers										
Truck mounted (Capacity 10,000 Ltrs)	0.0087	0.0299	0.0555	0.0001	0.0022	7.1	0.0008	0.0003549		
Truck mounted (Capacity 12,000 Ltrs)	0.0087	0.0299	0.0555	0.0001	0.0022	7.1	0.0008	0.0003549		
Truck mounted (Capacity 15,000 Ltrs)	0.0079	0.0810	0.0843	0.0002	0.0019	14.3	0.0007	0.0003197		
Water Tank Toe Type (Capacity 4000 Ltrs)	0.0052	0.0301	0.0368	0.0001	0.0015	4.9	0.0005	0.0002126		
Dumpers/Trucks										
Truck Mercedes 10W (500 ft³ (14.16 M³) Capacity)	0.1533	0.7593	1.1072	0.0014	0.0666	125	0.0138	0.0062243		
Truck Daewoo (500 ft ³ (14.16 M ³) Capacity)	0.1533	0.7593	1.1072	0.0014	0.0666	125	0.0138	0.0062243		

Fauliament	Emission Factors (lb/hr)									
Equipment	ROG	CO	NOX	SOX	PM	CO2	CH4	N2O		
Truck Nissan (500 ft ³ (14.16 M ³) Capacity)	0.1533	0.7593	1.1072	0.0014	0.0666	125	0.0138	0.0062243		
Truck Hino (500 ft ³ (14.16 M ³) Capacity)	0.1533	0.7593	1.1072	0.0014	0.0666	125	0.0138	0.0062243		
Dumper 10 Ton Capacity	0.1533	0.7593	1.1072	0.0014	0.0666	125	0.0138	0.0062243		
Dumper 18 Ton Capacity	0.1533	0.7593	1.1072	0.0014	0.0666	125	0.0138	0.0062243		
Flat Body Truck 8 Ton Capacity	0.1533	0.7593	1.1072	0.0014	0.0666	125	0.0138	0.0062243		
Excavator (Chain Excavator)										
Hitachi 220	0.1183	0.5220	0.7300	0.0009	0.0657	73.6	0.0107	0.0048023		
Hitachi 200	0.1183	0.5220	0.7300	0.0009	0.0657	73.6	0.0107	0.0048023		
Hitachi UH09/083	0.1183	0.5220	0.7300	0.0009	0.0657	73.6	0.0107	0.0048023		
Solar 120	0.1183	0.5220	0.7300	0.0009	0.0657	73.6	0.0107	0.0048023		
Komatsu DC 200	0.1288	0.6678	0.9613	0.0013	0.0569	112	0.0116	0.0052314		
Excavator (Tire Excavator)										
Hitachi W-100	0.1183	0.5220	0.7300	0.0009	0.0657	73.6	0.0107	0.0048023		
Hitachi DW-100	0.1183	0.5220	0.7300	0.0009	0.0657	73.6	0.0107	0.0048023		
Hitachi EX120/130	0.1183	0.5220	0.7300	0.0009	0.0657	73.6	0.0107	0.0048023		
Excavator (Track Type) 100 HP	0.1183	0.5220	0.7300	0.0009	0.0657	73.6	0.0107	0.0048023		
Aggregate Spreading Machine										
Aggregate Spreader Machine (4 M Wide)	0.1104	0.5320	0.7540	0.0009	0.0633	80.9	0.0100	0.0044826		
Power Generators										
150 KVA	0.0157	0.0698	0.1063	0.0002	0.0061	10.2	0.0014	0.0006363		
250 KVA	0.0276	0.0951	0.1632	0.0002	0.0096	17.6	0.0025	0.0011217		
Lift Machine	0.0175	0.0517	0.0957	0.0001	0.0055	11.0	0.0016	0.0007095		
Tractors										
Tractor 50 HP Capacity	0.1006	0.3305	0.3030	0.0004	0.0267	30.3	0.0091	0.004083		
Tractor (Fiat-480) and Trolley with Jack	0.0760	0.3557	0.4910	0.0006	0.0432	51.7	0.0069	0.0030875		
Capacity 7 M ³										
Tractor (Fiat-480) and Trolley without Jack	0.0760	0.3557	0.4910	0.0006	0.0432	51.7	0.0069	0.0030875		
Capacity 7 M ³										
Tractor (Fiat 480) with rotator blade	0.0760	0.3557	0.4910	0.0006	0.0432	51.7	0.0069	0.0030875		
Transit Mixers										
Capacity 6 M ³	0.112	0.4448	1.3824	0.0016	0.0664	168.8184	0.0052	0.0048		
Capacity 4 m ³	0.112	0.4448	1.3824	0.0016	0.0664	168.8184	0.0052	0.0048		
Daff (4 m ³)	0.112	0.4448	1.3824	0.0016	0.0664	168.8184	0.0052	0.0048		

Fundament	Emission Factors (lb/hr)									
Equipment	ROG	CO	NOX	SOX	PM	CO2	CH4	N2O		
Diesel Delivery Truck										
Diesel Delivery Truck with 100 mm (4 ")	0.034	0.3304	0.0336	0.0004	0.0036	44.094	0.0032	0.002		
diameter Pump, 6000 Liters										
Diesel Delivery Truck with 100 mm (4")	0.034	0.3304	0.0336	0.0004	0.0036	44.094	0.0032	0.002		
Diameter Pump, 10,000 Liters (Capacity)										
Bitumen Distributor Truck										
Capacity 2000 Ton	0.034	0.3304	0.0336	0.0004	0.0036	44.094	0.0032	0.002		
Steel Bar Cutting and Bending Machine										
Steel Bar Cutting Machine	0.0118	0.0617	0.0737	0.0002	0.0028	10.1	0.0011	0.0004777		
Steel Bar Bending Machine	0.0118	0.0617	0.0737	0.0002	0.0028	10.1	0.0011	0.0004777		
Steel Plate Cutter	0.0118	0.0617	0.0737	0.0002	0.0028	10.1	0.0011	0.0004777		
Steel Moulding	0.0118	0.0617	0.0737	0.0002	0.0028	10.1	0.0011	0.0004777		
Grinder Machine										
Grinder Machine (7"- 9")	0.1927	0.5215	0.4545	0.0006	0.0462	44.0	0.0174	0.0078241		
Floor Grinding Machine (Chemical)	0.1927	0.5215	0.4545	0.0006	0.0462	44.0	0.0174	0.0078241		
Paver										
2.5 M wide	0.1239	0.3124	0.2591	0.0003	0.0279	23.9	0.0112	0.0050299		
4 M wide	0.1150	0.3997	0.6897	0.0006	0.0610	54.5	0.0104	0.0046677		
Mobile Crane										
3 Ton	0.1101	0.2979	0.2478	0.0003	0.0258	23.2	0.0099	0.0044723		
10 Ton	0.0982	0.3650	0.5844	0.0006	0.0533	50.1	0.0089	0.0039868		
20 Ton	0.1089	0.4838	0.8259	0.0009	0.0479	80.3	0.0098	0.0044196		
45 Ton	0.1103	0.3103	1.0712	0.0013	0.0388	112	0.0100	0.0044785		
Stressing Equipment										
Stressing Equipment (Specs?)	0.1506	0.3950	0.3243	0.0004	0.0352	30.3	0.0136	0.0061143		
Piling Rig										
Piling Rig (Up to 1.5m Ø)	0.0194	0.0658	0.1233	0.0002	0.0054	16.0	0.0017	0.0007872		
Piling Rig (above 1.5m Ø	0.0351	0.2335	0.2768	0.0004	0.0149	31.0	0.0032	0.0014249		
Percussion boring winch (Diesel) with boring	0.0351	0.2335	0.2768	0.0004	0.0149	31.0	0.0032	0.0014249		
Bailer 127 to 200 mm Ø										
Percussion boring winch (Diesel) with boring bailer 450 mm Ø or above	0.0351	0.2335	0.2768	0.0004	0.0149	31.0	0.0032	0.0014249		

Fusiement	Emission Factors (lb/hr)								
Equipment	ROG	CO	NOX	SOX	PM	CO2	CH4	N2O	
Girder Launcher									
Model No. H2Q ,Lifting capacity 900 ton and	0.1008	0.5880	0.8599	0.0012	0.0467	107	0.0091	0.0040931	
maximum span range 30 M.									
Concrete Pump									
Mobile 80 M ³ / Hour	0.0386	0.1051	0.1803	0.0002	0.0117	19.5	0.0035	0.0015671	
Static 45 M ³ / Hour	0.1155	0.3229	0.3362	0.0004	0.0299	34.3	0.0104	0.0046884	
Power Broom									
Power Broom 2.1 M wide	0.0118	0.0617	0.0737	0.0002	0.0028	10.1	0.0011	0.0004777	
Dewatering Pump									
Dewatering Pump with Delivery Pipe 4" Ø (Diesel)	0.0386	0.1051	0.1803	0.0002	0.0117	19.5	0.0035	0.0015671	
Dewatering Pump with Delivery Pipe 6" Ø (Diesel)	0.1155	0.3229	0.3362	0.0004	0.0299	34.3	0.0104	0.0046884	
Dewatering Pump with Delivery Pipe 4" Ø (Petrol)	0.0386	0.1051	0.1803	0.0002	0.0117	19.5	0.0035	0.0015671	
Dewatering Pump with Delivery Pipe 6" Ø (Petrol)	0.1155	0.3229	0.3362	0.0004	0.0299	34.3	0.0104	0.0046884	
Compressor									
Capacity 300 CFM	0.0286	0.0779	0.1337	0.0002	0.0087	14.4	0.0026	0.0011617	
Pneumatic Tire Roller									
PTR 9 Wheeler 18 Ton Capacity	0.1320	0.6220	1.0725	0.0012	0.0591	108	0.0119	0.0053607	
PTR 9 Wheeler 21 Ton Capacity	0.1347	0.4083	1.4103	0.0017	0.0498	153	0.0122	0.0054712	
Asphalt Recycling & Cold Milling Machine									
Asphalt Recycling Machine	0.0185	0.0632	0.1170	0.0002	0.0045	15.3	0.0017	0.0007518	
Cold Milling Machine 1M width	0.0066	0.0391	0.0466	0.0001	0.0018	6.4	0.0006	0.0002693	
Road Marking Machine									
Model 15 DM	0.0118	0.0617	0.0737	0.0002	0.0028	10.1	0.0011	0.0004777	
Jack Hammer									
Jack Hammer HP-100 (Chain Type)	0.0160	0.0544	0.1019	0.0002	0.0044	13.2	0.0014	0.0006508	
Jack Hammer HP-100 (Tyre Type)	0.0160	0.0544	0.1019	0.0002	0.0044	13.2	0.0014	0.0006508	
Rock Driller									
Model DM 041 w, Type wet and weight 26 to 30 Kg.	0.0351	0.2335	0.2768	0.0004	0.0149	31.0	0.0032	0.0014249	

Equipment	Emission Factors (lb/hr)									
Equipment	ROG	CO	NOX	SOX	PM	CO2	CH4	N2O		
Misc. Equipment										
Plate Compactor	0.0153	0.0520	0.0974	0.0002	0.0042	12.6	0.0014	0.0006218		
Saw / Wood Cutter Machine (Petrol) 45 cc	0.0199	0.0678	0.1261	0.0002	0.0050	16.5	0.0018	0.0008085		
Pressing Machine for Door Shutter	0.0066	0.0391	0.0466	0.0001	0.0018	6.4	0.0006	0.0002693		
Pump 4" delivery (Diesel)	0.0386	0.1051	0.1803	0.0002	0.0117	19.5	0.0035	0.0015671		
Vibrator (Pocher 1.5")	0.0118	0.0617	0.0737	0.0002	0.0028	10.1	0.0011	0.0004777		
Paint Spray Machine	0.0185	0.0632	0.1170	0.0002	0.0045	15.3	0.0017	0.0007518		

Annex – 7.2

RESERVOIR LANDSLIDES

Potential locations of landslides are identified in the reservoir rim slopes are identified for their management. Total fifty potential landslides, 37 and 13 along the left and right reservoir slopes, respectively, were observed, as summarized in Table 7.2.1. Slope instability with levels I (High), II (Medium) and III (Low) in the following assessment criteria was only used to describe the degree of the possibility of future landslide activity at present condition-before the impoundment of dam reservoir.

No.	Depth	Length	Width	Volume	Distar	nce from	Elevati	on (m)	Present	Effect of	Hazard	Severity of Landslide-	Risk
INU.	(m)	(m)	(m)	(m ³)	Dam	axis (m)	Тое	Head	Stability	Impoundment	Level	related Consequence	Level
R-01	80	730	350	20,440,000	DS	4,650	842	1,207		S	C(II-s)	b	L(C-b)
R-02	90	251	100	2,259,000	DS	5,200	785	950		S	C(III-s)	b	L(C-b)
R-03	70	245	110	1,886,500	DS	5,350	775	950		S	C(III-s)	b	L(C-b)
R-04	20	237	430	2,038,200	DS	5,600	795	950		S	C(III-s)	b	L(C-b)
R-05	20	275	220	1,210,000	US	2,250	771	1,002			B(II-I)	b	M(B-b)
R-06	12	147	106	186,984	US	8,250	811	915		I	B(II-I)	b	M(B-b)
R-07	70	330	350	8,085,000	US	10,450	721	922		I	B(II-I)	b	M(B-b)
R-08	30	283	120	1,018,800	US	12,300	845	1,045		I	B(II-I)	b	M(B-b)
R-09	30	247	110	815,100	US	16,750	861	1,085		I	B(II-I)	b	M(B-b)
R-10	40	292	200	2,336,000	US	19,700	854	1,097		I	B(II-I)	b	M(B-b)
R-11	55	241	54	715,770	US	44,150	994	1,079		S	C(II-s)	b	L(C-b)
R-12	52	466	125	3,029,000	US	47,050	968	1,308		s	C(II-s)	b	L(C-b)
R-13	80	199	80	1,273,600	US	49,550	1,059	1,185	-	S	C(II-s)	b	L(C-b)
L-01	53	145	50	384,250	US	5,700	820	930		s	C(II-s)	b	L(C-b)
L-02	53	239	46	582,682	US	5,300	775	890		s	C(III-s)	b	L(C-b)
L-03	40	443	173	3,065,560	US	5,850	812	1,142		I	B(II-I)	b	M(B-b)
L-04	200	800	350	56,000,000	US	6,800	827	1,777	=	m	B(II-m)	b	M(B-b)
L-05	20	243	120	583,200	US	6,700	1,055	1,205		s	C(II-s)	b	L(C-b)
L-06	55	313	115	1,979,725	US	8,250	920	1,100		m	B(II-m)	b	M(B-b)
L-07	15	120	80	144,000	US	11,350	865	945		Ι	C(II-I)	b	L(C-b)
L-08	125	565	307	21,681,875	US	16,150	873	1,298		m	B(II-m)	b	M(B-b)
L-09	70	828	380	22,024,800	US	16,670	950	1,570		s	C(II-s)	b	L(C-b)
L-10	115	615	270	19,095,750	US	17,000	940	1,270		s	C(II-s)	b	L(C-b)
L-11	40	381	300	4,572,000	US	17,300	1,112	1,442		S	C(II-s)	b	L(C-b)
L-12	30	417	110	1,376,100	US	17,950	836	1,156		Ι	C(II-I)	b	L(C-b)
L-13	30	254	150	1,143,000	US	18,850	896	1,136		m	C(II-m)	b	L(C-b)
L-14	20	461	190	1,751,800	US	20,000	837	1,387		m	C(II-m)	b	L(C-b)
L-15	20	842	310	5,220,400	US	20,350	820	1,510		m	C(II-m)	b	L(C-b)
L-16	15	132	75	148,500	US	21,000	941	1,061		s	C(II-s)	b	L(C-b)
L-17	20	339	280	1,898,400	US	21,200	880	1,120	=	m	B(II-m)	b	M(B-b)
L-18	20	203	70	284,200	US	22,300	1,038	1,198	=	S	C(II-s)	b	L(C-b)
L-19	15	180	90	243,000	US	22,200	1,075	1,200		s	C(II-s)	b	L(C-b)
L-20	21	115	27	65,205	US	27,600	1,140	1,228		s	C(II-s)	С	L(C-b)
L-21	60	465	175	4,882,500	US	27,850	949	1,249		s	C(II-s)	b	L(C-b)
L-22	63	244	115	1,767,780	US	32,150	950	1,115		S	C(II-s)	b	L(C-b)
L-23	10	127	60	76,200	US	33,000	961	1,051		m	B(II-m)	С	M(B-C)
L-24	71	385	115	3,143,525	US	33,250	900	1,175		m	B(II-m)	b	M(B-b)
L-25	85	340	142	4,103,800	US	33,950	915	1,170	=	m	B(II-m)	b	M(B-b)
L-26	30	318	550	5,247,000	US	35,650	845	1,070		I	B(II-I)	b	M(B-b)
L-27	15	574	210	1,808,100	US	36,850	878	1,318		m	B(II-m)	b	L(B-b)
L-28	60	298	46	822,480	US	37,850	975	1,192	=	s	C(II-s)	b	L(B-b)
L-29	30	105	38	119,700	US	40,300	919	1,058		m	B(II-m)	b	M(B-b)
L-30	38	105	73	291,270	US	42,700	945	1,018	=	m	C(II-m)	b	L(C-b)
L-31	20	322	60	386,400	US	44,150	1,016	1,201	=	s	C(II-s)	b	L(C-b)
L-32	25	260	100	650,000	US	45,150	961	1,161		s	C(II-s)	b	L(C-b)
L-33	34	280	100	952,000	US	47,350	940	1,150	=	m	B(II-m)	b	M(B-b)
L-34	57	290	65	1,074,450	US	47,550	940	1,140	=	m	B(II-m)	b	M(B-b)
L-35	76	247	96	1,802,112	US	48,550	1,000	1,200		s	C(II-s)	b	L(C-b)
L-36	100	375	200	7,500,000	US	51,350	1,018	1,331		s	C(II-s)	b	L(C-b)
L-37	45	250	150	1,687,500	US	51,550	1,094	1,220		s	C(II-s)	b	L(C-b)

Table 7.2.1. Summary	y of Identified Reservoir Potential Landslides
Table 1.2.1. Summar	V OI IUEIILIIIEU KESEIVOII POLEIILIAI LAIIUSIIUES

Risk Assessment of Potential Landslides

Risk assessment of a potential landslide includes two steps, namely, 1) Hazard assessment associated with impoundment and 2) Estimation of landslide-related consequences.

Hazard level assessment of a landslide after impoundment or during reservoir operation was carried out on the basis of the above-mentioned two criteria, slope instability at present condition (Tables 7.2.2 and 7.2.3) and effect of impoundment on a landslide (Table 4). A hazard level was defined as A to C from high to low as a result of the hazard level assessment with impoundment, as shown in Table 7.2.4.

	e Instability at sent Condition	Criteria for Judgments							
I	Highly	1) Over-steepened with surface movement, or							
	Unstable) Recent, active landslides, or							
		Slope adjacent to recent, active landslide with similar							
		characteristics, or							
		Pre-existing landslide areas with signs	Pre-existing landslide areas with signs of recent activity						
II	Questionable	Over-steepened with no surface movement, or							
	(or Unstable)	Pre-existing landslide areas with no sign of recent instability							
	Stable	Land not qualifying as questionable or	nighly unstable						

 Table 7.2.2: Assessment criteria of slope instability at present conditions

Table 7.2.3: Assessment Criteria of Impoundment Effect on Slope Stability

	Criteria for Judgments	Criteria for Judgments				
I	Large	One third of a landslide is below the designed full supply level (El. 950m).				
m	Medium	Less one third of landslide is below the designed full supply level				
S	Small	Toe of a landslide is above the designed full supply level				

Hazard Assessment		Slope Instability at Present Condition						
		I		III				
Effect of Impoundment	I	А	В	С				
	m	В	В	С				
	S	С	С	С				

Risk assessment was carried out in consideration of (i) landslide hazard level (Table 7.2.4) and (ii) landslide-related consequences (Table 7.2.5) and defined as H, high risk level to L, low risk level, as shown in Table 7.2.6.

Severity of Landslide Related Consequences			Criteria for Judgments
a Large		1)	Directly damage to dam body and effect on stability of dam itself
b	Medium	1)	Directly or indirectly damage to facilities, or
		2)	Complete blockage of the river channel by landslide material (more than 10 ⁵ m ³ in volume) with a resulting flood, or
		3)	High overtopping of a dam crest by water wave probably with large damage to related facilities and downstream
С	Small	1)	Partial blockage of the river channel by landslide material (less than 10 ⁵ m ³ in volume), or
		2)	Reduction of reservoir capacity by sedimentation of landslide materials, or
		3)	Low overtopping of a dam crest by water wave probably with small damage to related facilities and downstream

Risk Assessment		Severity of Landslide-related Consequence						
		а	b	С				
Hazard Level of a Landslide Area	А	Н	М	L				
	В	М	М	L				
	С	L	L	L				

The assessment results, as summarized in Table 7.2.6 above, show that eighteen landslides with moderate risk level would cause a considerable damage to the project

and were selected for further geotechnical investigations and probably structural stabilization, as listed Table 7.2.7.

No.	Landslide No.	Present Stability	Effect of Impoundment	Hazard Level	Severity of Landslide- related Consequence	Risk Level
1	R-05			B(II-I)	b	M(B-b)
2	R-06	II	I	B(II-I)	b	M(B-b)
3	R-07		I	B(II-I)	b	M(B-b)
4	R-08			B(II-I)	b	M(B-b)
5	R-09			B(II-I)	b	M(B-b)
6	R-10		I	B(II-I)	b	M(B-b)
7	L-03			B(II-I)	b	M(B-b)
8	L-04		m	B(II-m)	b	M(B-b)
9	L-06	=	m	B(II-m)	b	M(B-b)
10	L-08	=	m	B(II-m)	b	M(B-b)
11	L-17	=	m	B(II-m)	b	M(B-b)
12	L-23	=	m	B(II-m)	С	M(B-C)
13	L-24	=	m	B(II-m)	b	M(B-b)
14	L-25		m	B(II-m)	b	M(B-b)
15	L-26	II		B(II-I)	b	M(B-b)
16	L-29		m	B(II-m)	b	M(B-b)
17	L-33	II	m	B(II-m)	b	M(B-b)
18	L-34	II	m	B(II-m)	b	M(B-b)

Table 7.2.7: Selected Landslides for Further Geotechnical Activity

8.1.1 Management of Landslides

Further evaluate the hazard and risk of these landslides and their activity during the reservoir operation, the following geological and geotechnical investigations for the selected landslides were suggested:

- Topographical survey (1:2,000 scale)
- Detailed surface mapping
- Borehole investigations
- Installation of monitoring system (displacement and rainfall)
- Monitoring of landslide movement (each 5 years before and after impoundment)

A detailed geological and geotechnical study will be studied on the basis of the abovelisted data to develop a geotechnical recommendation on the management of these potential landslides, as listed below:

- Continuous monitoring of landslide movement, or
- Stabilization of landslides by structural measures such as removal of unstable area, and anchoring works, etc.
- Control of drawdown rate of reservoir water level during reservoir operation

It is proposed that the reservoir to be filled initially with a rate of 1 m/day and carefully monitor the slopes in in the landslide prone areas. During the sediment flushing, the fill rate of 4 m/day and emptying rate of 3 m/day is recommended to minimize the landslides. It is expected after few cycles of reservoir filling and releasing the slopes will be stabilized.

Annex – 7.3

SEISMIC HAZARD ASSESSMENT¹

1. Introduction

The site of Dasu Project is located in the Kohistan Island Arc physiographic province and tectonically it is called an active region because it is "sandwiched" between the converging Indian and Eurasian tectonic plates. According to the grouping of the Geological Survey of Pakistan, the Project area belongs to the "Serious Seismic Danger Zone".

Among the planned project facilities, the dam, which is 242 m high, is a critical component of the Project. Thus, the dam should be designed to be safe under strong earthquake action. In order to obtain the seismic design parameters, the following procedures have been undertaken for the seismic hazard assessment:

- 1) Estimate of peak ground acceleration (PGA) value by deterministic procedure;
- 2) Estimate of PGA value by probabilistic procedure;
- 3) Estimate of response spectra for design; and
- 4) Preparation of earthquake time histories.

In addition to the design parameters above, it is noted that reservoir-triggered earthquake should be considered as one of seismic hazard assessment. It is sure that the filling, drawdown, or the presence of the reservoir has caused earthquake(s) although there are a limited number of documented cases. According to the ICOLD guideline (Bulletin 72, 2010 Revision), the largest recorded magnitude was 6.3. DHC is trying to find some evidence or a sign that would suggest potential earthquake not only during the field investigation but also during construction. Careful attention should be made during impounding. Therefore, no specific description is given in this section.

2. Definition of Design Parameters by ICOLD (2010)

The ICOLD guidelines (Bulletin 72, 2010 Revision) provide the following definitions:

<u>Operating Basis Earthquake (OBE)</u> represents the level of ground motion at the dam site for which only minor damage is acceptable. The dam, appurtenant structures and equipment should remain functional and damage should be easily repairable, from the occurrence of earthquake shaking not exceeding the OBE. In theory the OBE can be determined from an economic risk analysis but this is not always practical or feasible. In many cases, it will be appropriate to choose a minimum return period of 145 years (i.e., a 50% probability of not being exceeded in 100 years).

<u>Safety Evaluation Earthquake (SEE)</u> is the maximum level of ground motion for which the dam should be designed or analyzed. For dams whose failure would present a great social hazard the SEE will normally be characterized by a level of motion equal to that expected at the dam site from the occurrence of a deterministically-evaluated maximum credible earthquake or of the probabilistically-evaluated earthquake ground motion with a very long return period, for example, 10,000 years.

<u>A Maximum Credible Earthquake (MCE)</u> is the largest reasonably conceivable earthquake magnitude that is considered possible along a recognized fault or within a geographically defined tectonic province, under the presently known or presumed tectonic framework. The most severe ground motion affecting a dam site due to an MCE scenario is referred to as the MCE ground motion. Evaluation of the MCE ground motion is generally done using a deterministic approach, in which the MCE scenarios for each identified fault and tectonic province are taken into account.

¹ Extract from Detailed Design Engineering Report of Dasu Hydropower Project, 2012

3. Major Faults and Lineaments

Major faults and lineaments assessed and reviewed in this study are summarized in Table 7.3.1 and shown in Figure 7.3.1 and Figure 7.3.2

Eleven faults and lineaments have been reviewed and seven out of 11 had been considered in the FS in 2009. The following four faults and lineaments are additionally listed because there is no clear evidence that these are not active faults:

- Spat Gah fault (East, West), interference type;
- Lineament No.14 delineated by Dr. Asif on LandSat imagery;
- Lineament No.18 delineated by Dr. Asif on LandSat imagery; and
- Lineament No. 9 delineated by Dr. Asif on LandSat imagery.

In the FS report, the Lineament No.14 is the branch of the Kamila strike slip fault and it is stated, "Dr. Asif also marked this point on the LandSat image with two branches at the northern terminus near the confluence of the Kandia River with the Indus River. This fault passes at the closest distance of 10 km west of the project site. This is a younger fault cutting the regional structure and should therefore be taken as active structure capable of releasing regional stress in the form of earthquakes."

As to Lineament No. 9 and No. 18, due to difficult access or covering by deep deposit, the said lineaments could not be judged as inactive.

Matsuda et al. (2000) stated that the groups of faults formed of same strike keeping an adjacent distance within 5 km should have characteristics common among associated faults. Therefore, Spat Gah Fault (east, west) is incorporated into this study.

	Tectonic	Fault		Closest	Maximun	Selected Magnitude		
	Feature	Length (Km)	Fault type	distance (km)	Wells & Coppersmith (1994)	Nowroozi (1985) ¹⁾	Slemmons et al. (1982) ^{1), 2)}	(Mw) Maximum
Feasibility Repot	Main Mantle Thtust (MMT)	200	reverse	45	7.8	7.9	8.1	8.1
Feasibility Repot	Kohistan Fault	150	reverse	30	7.7	7.7	7.9	7.9
Feasibility Repot	Spat Gah Fault (East)	16	strike-slip	8	6.5	6.5	6.3	6.5
Feasibility Repot	Spat Gah Fault (West)	19	strike-slip	10	6.6	6.6	6.6	6.6
Feasibility Repot	Chilas Complex Fault (Kamila Shear)	140	unknown	12	7.6	7.7	7.7	7.7
Feasibility Repot	Kamila Strike Slip Fault	55	strike-slip	10	7.1	7.2	7.0	7.2
Feasibility Repot	Fault No.13	12	unknown	8	6.3	6.4	6.4	6.4
This study	Spat Gah Fault (East+West)	35	strike-slip	8	6.9	6.9	6.7	6.9
This study	Fault No.14	16	unknown	5	6.5	6.5	6.5	6.5
This study	Fault No.18	100	unknown	16	7.4	7.5	7.5	7.5
This study	Fault No.9	7	Nomal	6	6.0	6.1	6.0	6.1

 Table 7.3.1: Major Faults and Lineaments and their Magnitude Assessed in this Study

From Ms to Mw is applied in Scordilis(2006)
 Italic means average value of Slemmons et al.(1982)
 unknown fault type assumed as reverse fault

4. Examination of PGA

The magnitude was selected as the maximum value among the respective magnitudes proposed by three research groups.

A. <u>Wells and Coppersmith (1994):</u>

The relationship between the length of an active fault (L, km) and the moment magnitude (Mw) is as follows:

Reverse fault Mw=5+1.22*log(L)

Strike-slip fault	Mw=5.16+1.12*log(L)
Normal fault	Mw=4.86+1.32*log(L)
All	Mw=5.08+1.16*log(L)

B. Nowroozi (1985):

The relationship between the length of an active fault (L, km) and the surface wave magnitude (Ms) is as follows:

Average Ms=1.259+1.244logL

The conversion to the moment magnitude from the surface wave magnitude uses the formula of Scordilis (2006). It is as follows:

Mw=0.99*Ms+0.08 for 6.2< MS < 8.2

C. Slemmons et al. (1982)

The relationship between the length of an active fault (L, km) and the surface wave moment magnitude (Ms) is as follows:

Strike-slip fault	Ms=1.404+1.169logL
Reverse fault	Ms=2.021+1.142logL
Normal fault	Ms=0.809+1.341logL

The conversion to the moment magnitude from the surface wave magnitude uses the formula of Scordilis (2006). It is as follows:

Mw=0.99*Ms+0.08 for 6.2< MS < 8.2

The magnitudes of the faults of which type are unknown are taken as the average values using the above three equations.

Furthermore, the information on the active faults around the Dasu Dam site for the past five years have been checked through several journals and their results. The list of journals is shown in **Table 7.3.2**. So far, new issues on the active faults have not been reported yet.

1)	Tectonophysics
2)	Physics of Earth and Planetary Interiors
3)	Geophysical Journal International
4)	Geophysical Research Letters
5)	J. Geophys Res
6)	Pure and Applied Geophysics
7)	Geomorphology
8)	Remote Sensing of Environment
9)	Journal of Asian Earth Sciences
10)	Journal of Geodynamics
11)	Journal of Structural Geology
12)	Bulletin of the Seismological Society of America

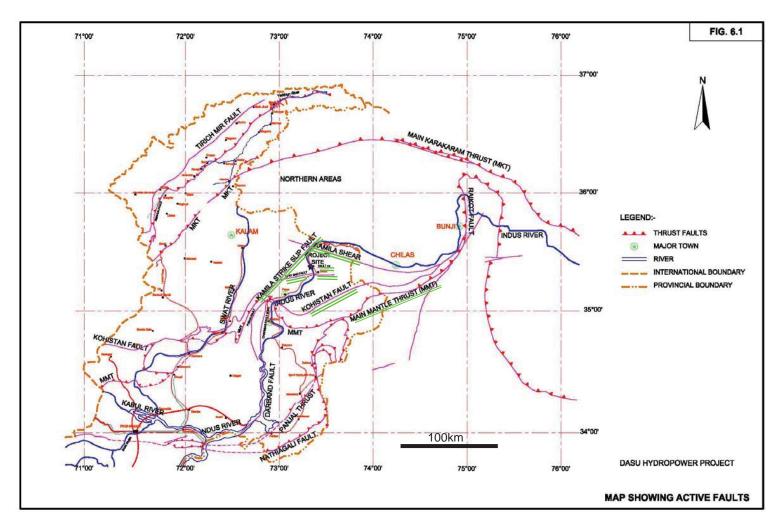


Figure 7.3.1: Major Active Faults around the Dasu Dam site

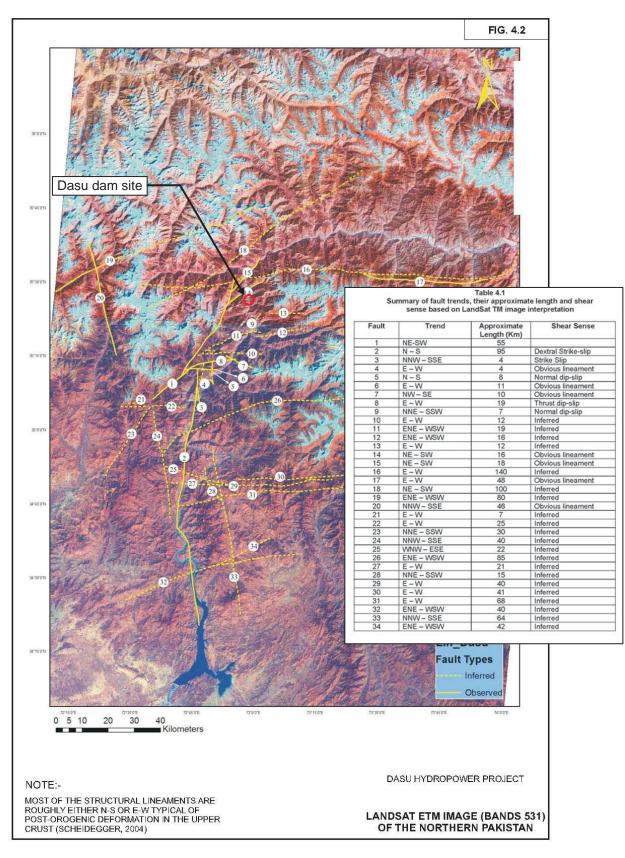


Figure 7.3.2: Major Lineaments around the Dasu Dam site

In this study, the following five attenuation models were considered:

- Abrahamson and Silva 2008 NGA Model (referred to as "AS08");
- Boore and Atkinson 2008 NGA Model (referred to as "BA08");
- Campbell and Bozorgnia 2008 NGA Model (referred to as "CB08");
- Chiou and Youngs 2008 NGA Model (referred to as "CY08"); and
- Idriss 2008 NGA Model (referred to as "I08").
 Note: NGA means the Next Generation Attenuation Project of Pacific Engineering Research Center, University of California at Berkeley in the United States of America.

Table 7.3.3 shows the results of PGA calculation. **Figure 7.3.3** also shows the same results corresponding to each attenuation model. The results are summarized as follows:

- 1) The maximum PGA was estimated at Fault No. 14 in all faults and lineaments. The PGA (median plus one sigma) was 0.62 g as the maximum value of the five attenuation models.
- 2) The next greatest PGA was estimated at Kamila Shear. The PGA (median plus one sigma) was 0.52 g as the maximum value of the five attenuation models.
- 3) Abrahamson (2008) shows Figure 7.3.4 and indicates that formulas I08 and CY08 were likely to be high values compared with other models. For some cases, the PGA values of I08 and CY08 were about 1.5 to 2 times more than other models if the distance from the fault is short.
- 4) The PGA values of models AS08, BA08 and CB08 were very similar and seem to be reliable.

As a result, the three models, AS08, BA08, and CB08, were used for the estimation of PGA of MCE. The maximum PGA resulting from the three formulas (AS08, BA08, and CB08) was estimated to be 0.54 g, which will occur along Fault No. 14.

	Tectonic	Fault	Fault	Closest	Maximun	n Magnitude P (Mw)	otential	Selected Magnitude	AS	\$08	BA	\08	CE	308	Cì	/08	IC	08
	Feature	Length (Km)	Fault type	distance (km)	Wells & Coppersmith (1994)	Nowroozi (1985) ¹⁾	Slemmons et al. (1982) ^{1), 2)}	(Mw) Maximum	Median	Median +1 σ	Median	Median +1 σ	Median	Median +1 <i>σ</i>	Median	Median +1 σ	Median	Median +1 σ
Feasibility Repot	Main Mantle Thtust (MMT)	200	reverse	45	7.8	7.9	8.1	8.1	0.099	0.172	0.124	0.219	0.092	0.155	0.137	0.234	0.127	0.206
Feasibility Repot	Kohistan Fault	150	reverse	30	7.7	7.7	7.9	7.9	0.113	0.197	0.150	0.263	0.116	0.196	0.170	0.289	0.163	0.268
Feasibility Repot	Spat Gah Fault (East)	16	strike-slip	8	6.5	6.5	6.3	6.5	0.160	0.294	0.176	0.309	0.245	0.415	0.227	0.403	0.227	0.419
Feasibility Repot	Spat Gah Fault (West)	19	strike-slip	10	6.6	6.6	6.6	6.6	0.141	0.256	0.167	0.293	0.211	0.357	0.202	0.355	0.207	0.377
Feasibility Repot	Chilas Complex Fault (Kamila Shear)	140	unknown	12	7.6	7.7	7.7	7.7	0.187	0.327	0.218	0.384	0.215	0.364	0.302	0.515	0.299	0.501
Feasibility Repot	Kamila Strike Slip Fault	55	strike-slip	10	7.1	7.2	7.0	7.2	0.179	0.313	0.206	0.362	0.227	0.385	0.257	0.438	0.257	0.447
Feasibility Repot	Fault No.13	12	unknown	8	6.3	6.4	6.4	6.4	0.152	0.282	0.165	0.289	0.237	0.401	0.241	0.431	0.243	0.450
This study	Spat Gah Fault (East+West)	35	strike-slip	8	6.9	6.9	6.7	6.9	0.190	0.336	0.210	0.369	0.255	0.431	0.265	0.455	0.272	0.484
This study	Fault No.14	16	unknown	5	6.5	6.5	6.5	6.5	0.221	0.406	0.218	0.384	0.320	0.542	0.332	0.588	0.334	0.616
This study	Fault No.18	100	unknown	16	7.4	7.5	7.5	7.5	0.143	0.250	0.180	0.317	0.170	0.287	0.230	0.393	0.229	0.390
This study	Fault No.9	7	Nomal	6	6.0	6.1	6.0	6.1	0.154	0.294	0.124	0.218	0.228	0.385	0.181	0.331	0.219	0.416

Table 7.3.3: Estimated PGA Values for Major Faults and Lineaments around the Dasu Damsite (Unit: g)

Notes: The values highlighted in green indicate the maximum value at mean plus one standard deviation (84-percentile), and the values highlighted in yellow indicate the maximum value at the median (50-percentile).

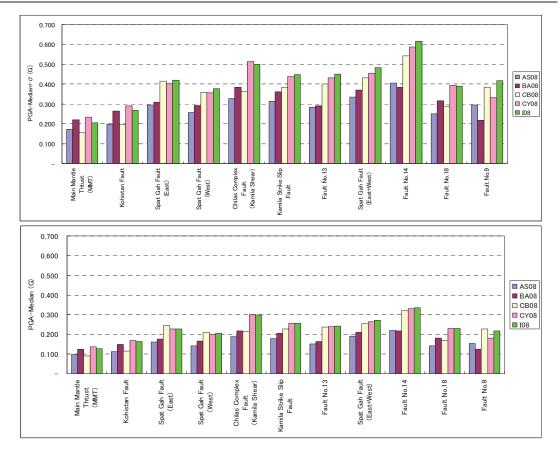
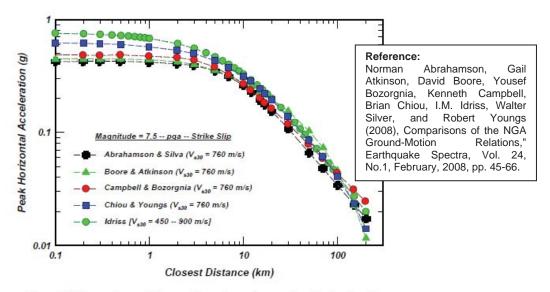
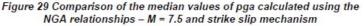




Figure 7.3.3: Estimated PGA Values for Major Faults and Lineaments around the Dasu Dam Site (Unit: g) (Top: Median+σ, and Bottom: Median)

Note: • indicates PGA using I08, and • indicates PGA using CY08

Figure 7.3.4: Comparison of the Median Values of PGA as Calculated Using the NGA Relationships

5. Relation between Frequency of Exceeding and PGA

(1) Data used for analysis

The feasibility study collected data observed from 1828 to April 2008, while DHC collected data after April 2008 up to 2011 as supplement from the following three observing stations:

i) Earthquake data collected at Tarbela Dam and Mangla Dam;

- ii) U.S. Geological Survey (USGS); and
- iii) International Seismological Centre (ISC).

Seismicity of the Project region from 1828 to 2011 is shown in **Figure 7.3.5**. It shows that the southern area of the Dasu Dam site has high seismicity. M5 class earthquakes cluster in this area however, the Dasu Dam site is outside of this area. The epicenter of the earthquake which occurred on October 8, 2005 (Mw=7.6) is shown in this figure. The distance from the epicenter to the dam site is about 100 km.

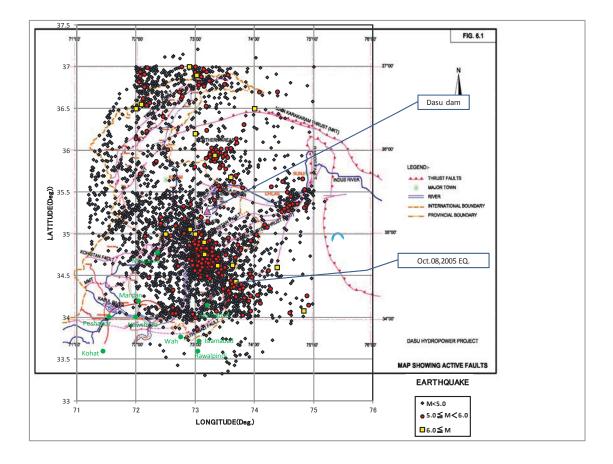


Figure 7.3.5: Seismicity of the Project Region and Active Faults

Figure 7.3.6 and **Figure 7.3.7** show the focal depth distribution of earthquakes (1828-2011), and that most earthquakes occurred within a depth of 50 km. This means the strong ground motion is likely to be expandable.

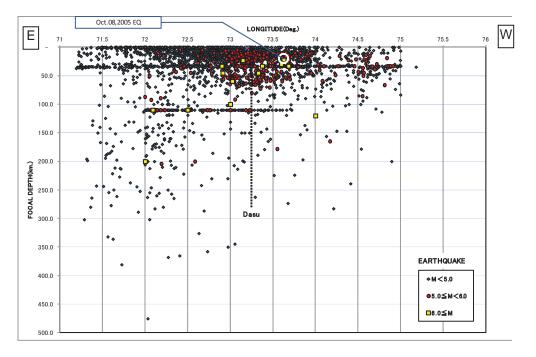


Figure 7.3.6: Focal Depth Distribution of Earthquakes (EW Section)

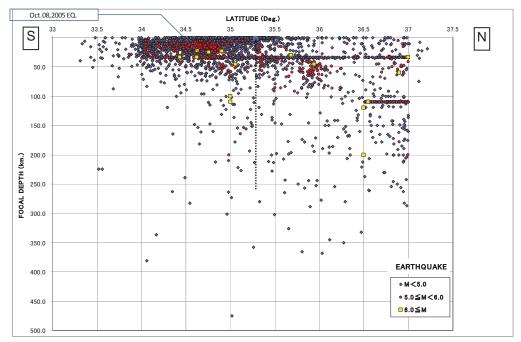


Figure 7.3.7: Focal Depth Distribution of Earthquakes (NS Section)

(2) Analytical method

In accordance with the reference titled, "An online graphic computer program (ERSA-G) and its application to seismic macro-zonation of Japan", which has been developed at the Institute of Industrial Science, the University of Tokyo, the following procedures were applied:

- i) Compute accumulative frequency distribution against the respective earthquake intensity "M" related to the earthquake recorded, and compute the annual earthquake intensity divided by the observation period.
- ii) Plot the data, earthquake intensity in x-coordinates and accumulative frequency per year in y-coordinates on both logarithm graphs.
- iii) Get the equation of log Y=A+B*log X, where, A and B are coefficients.

The online graphic system takes into account the following models:

- AS08: Abrahamson and Silva 2008 NGA Model;
- BA08: Boore and Atkinson 2008 NGA Model;
- CB08: Campbell and Bozorgnia 2008 NGA Model; and
- I08: Idriss 2008 NGA Model.

If Chiou and Youngs 2008 NGA Model (CY08) is used, the PGA values will likely be extremely high because this method is sensitive to earthquakes occurring at deep (focal depth is over 100 km). Thus, the CY08 model is not used for this analysis.

(3) Results

The results of PGA versus the epicenter distance (km) at the Dasu Dam site using the four models were plotted as shown in **Figure 7.3.8**.

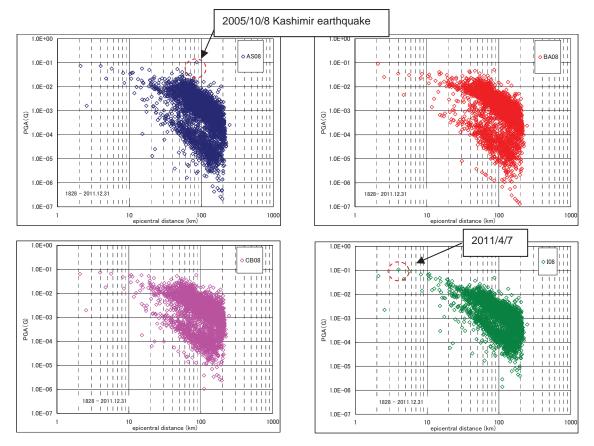


Figure 7.3.8: Distributions of Maximum PGA at the Dasu Dam Site using the Four Candidate Models (1828 to 2011)

As shown in **Figure 7.3.8**, it was confirmed that the relationship between the epicentral distance (km) and the PGA (g) among the four models is almost same.

The maximum PGA during the observation period was 0.108 g as assessed by I08. It was the earthquake which occurred on April 7, 2011 with the epicenter 4 km from the Dasu Dam site. Furthermore, the PGA of 0.106 g as assessed by AS08 was based on the Kashmir Earthquake which occurred on October 8, 2005.

The results of the seismic risk analysis by each attenuation model are shown below in **Figure 7.3.9** to **Figure 7.3.12**.

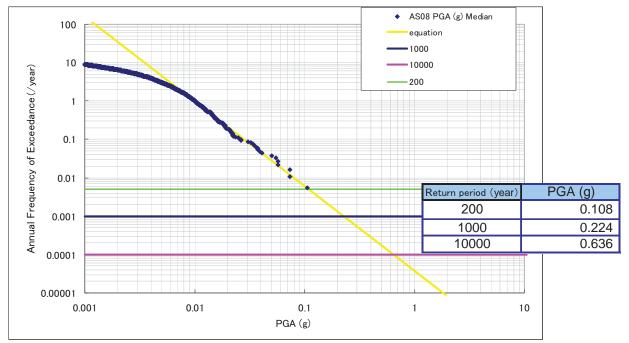


Figure 7.3.9: Relationship between Annual Frequency of Exceeding (/year) and PGA (g) (1828 to 2011) as Assessed by AS08

By plotting the annual frequency of exceeding (/year) and the PGA (g), the linear recurrence formula to fit the upper bound was obtained.

It was assumed that the PGA at 10,000 years recurrence interval with a probability of exceeding 1% in 100 years might correspond to MCE.

Figure 7.3.9 shows that the PGAs corresponding to 200-year, 1000-year, and 10,000-year recurrence intervals are 0.108 g, 0.224 g, and 0.636 g, respectively.

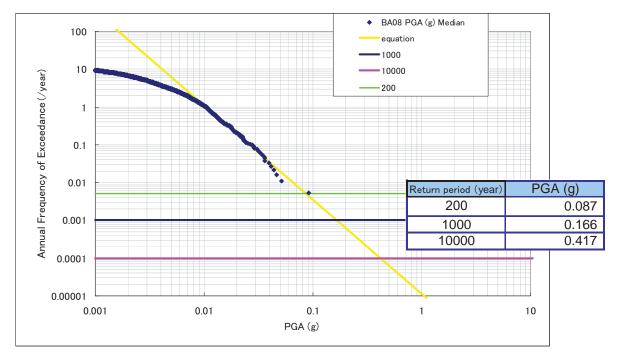


Figure 7.3.10: Relationship between Annual Frequency of Exceeding (/year) and PGA (g) (1828 to 2011) as Assessed by BA08

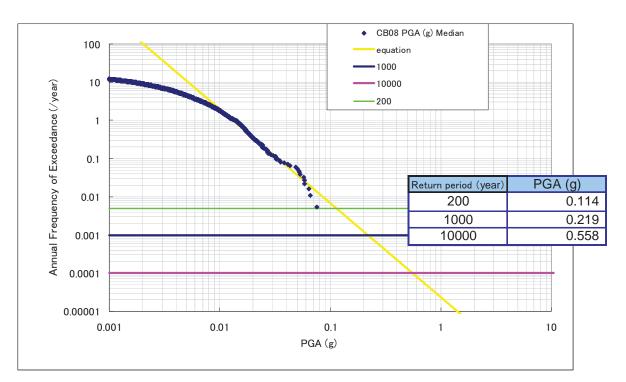


Figure 7.3.11: Relationship between Annual Frequency of Exceeding (/year) and PGA (g) (1828 to 2011) as Assessed by CB08

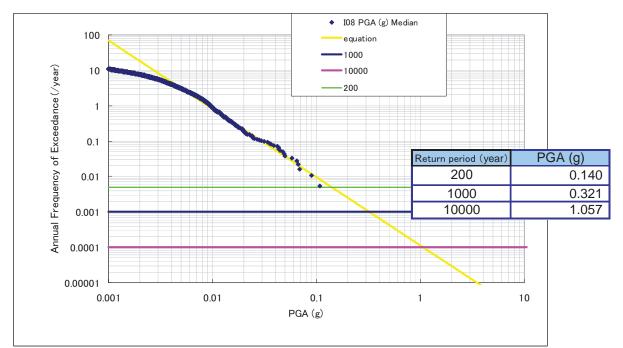


Figure 7.3.12: Relationship between Annual Frequency of Exceeding (/year) and PGA (g) (1828 to 2011) as Assessed by I08

The evaluation results with respect to PGA by using the four models are summarized in **Table 7.3.4** below.

Return period (year)	PGA (g) Median					FS
	AS08	BA08	CB08	108	Max	F3
200	0.11	0.09	0.11	0.14	0.14	0.18
1000	0.22	0.17	0.22	0.32	0.32	0.29
10000	0.64	0.42	0.56	1.06	1.06	

Table 7.3.4: Results of Return Period versus PGA

As indicated in Section 2.6.4, except for the PGA assessed by I08, the PGA for a return period of 10,000 years ranges within 0.4-0.6 g. It was confirmed that this figure well coincides with that of MCE, which is 0.54 g as assessed from associated faults and lineaments around the Dasu Dam site described in Section 2.6.4.

6. Examination of PGA for MCE and OBE

MCE:

In the deterministic approach using attenuation models, the maximum PGA of the three formulas (AS08, BA08, and CB08) was 0.54 g at Fault No. 14. This value is recommended as the PGA for MCE. In the probabilistic approach using the seismic risk analysis, the average PGA in a return period of 10,000 years using the above three models indicated 0.54 g.

Therefore, the value of 0.54 g is recommended as the PGA for MCE.

OBE:

Following the definition provided in the ICOLD guideline, the return period of 200 years was considered as OBE and that for 1000 years is attached for reference. Following the results shown in **Table 7.3.4**, the value of 0.14 g is recommended as the PGA for OBE.

Comparing with the values in the FS, MCE is greater while OBE is less. The main reasons which caused such differences include the increase in the number of data for analysis (from April 2008 to 2011) and the application of the latest probabilistic method with respect to software and acceleration attenuation relationships. The FS used the

probabilistic analysis software EZ-FRISK (Risk Engineering Inc.), while in this study the program based on ERSA-G analytical method was used. In both the FS and this study, the acceleration attenuation relationships were used to adopt crustal earthquake in the world, however, the FS adopted Idriss (2004), Abrahamson and Silva (2004), Boore and Atkinson (2007), and Campbell and Bozorgnia (2008). On the other hand, this study adopted the four latest available NGA models, AS08, BA08, CB08, and I08.

7. Design of Acceleration Response Spectra for MCE and OBE

(1) Design of horizontal acceleration response spectra

The acceleration response spectrum (5% damped) of MCE was examined at Fault No. 14. The response spectrum was calculated by the following attenuation models:

- Abrahamson and Silva 2008 NGA Model (AS08);
- Boore and Atkinson 2008 NGA Model (BA08); and
- Campbell and Bozorgnia 2008 NGA Model (CB08).

The acceleration response spectra (both the median and median+1 σ were written together) from the three attenuation models are shown in **Figure 7.3.13**. Moreover, the design response spectrum of MCE and OBE (return period 975 years) in the FS is also shown in this figure.

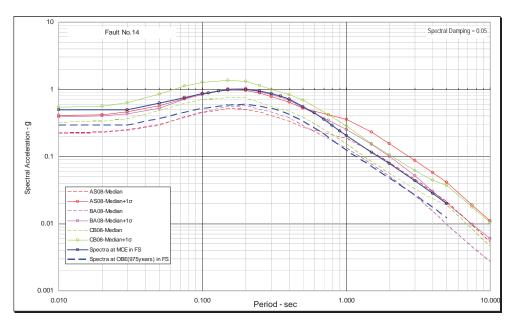


Figure 7.3.13: Response Spectra (5% Damped) Estimated at Fault No. 14

The acceleration response spectrum for MCE was set up by taking the maximum envelope curve of each response spectrum. **Figure 7.3.14** shows the designed horizontal acceleration response spectrum for MCE.

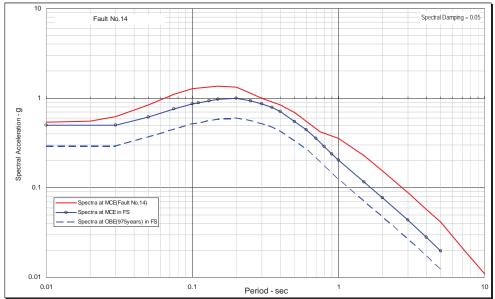


Figure 7.3.14: Designed Horizontal Acceleration Spectrum at Fault No. 14 for MCE (PGA is Equivalent to 0.54 g)

The OBE response spectra (Figure 7.1.15 and 7.1.16) adopted for the design was assessed through the following procedure:

- i) Compute the response spectrum (median and mean plus one standard deviation) for 11 major faults and lineaments near the Dasu Dam site as summarized in **Table 7.3.1** and further computed the average.
- ii) Adjust the average spectrum at 0.01 s by multiplying the constant to be consistent with the PGA for 200 years.

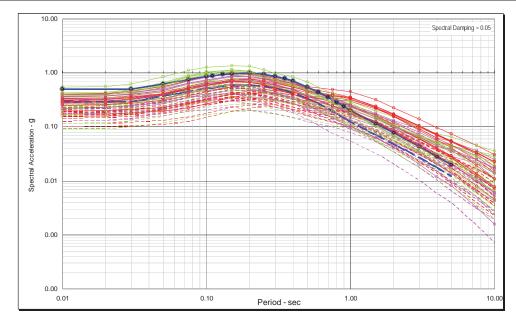


Figure 7.3.15: Response Spectrum Estimated for Major Faults and Lineaments around the Dasu Dam Site

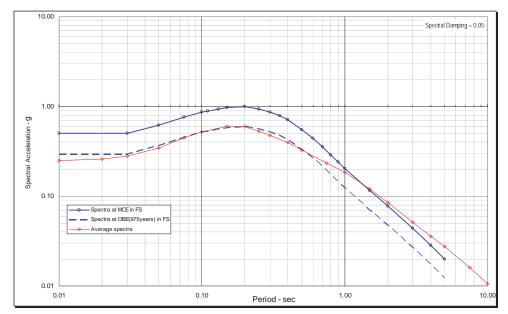


Figure 7.3.16: Average Acceleration Response Spectrum (PGA is Equivalent to 0.25 g) and Comparison with the Spectra in the FS (2009)

The horizontal response spectrum with a return period of 200 years is shown in **Figure 7.3.17**.

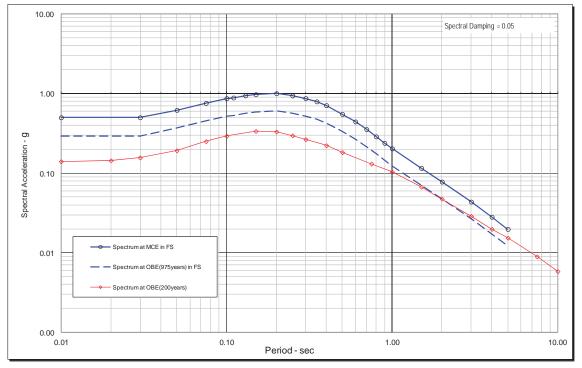


Figure 7.3.17: Design OBE Response Spectrum for Return Period of 200 Years Corresponding to PGA of 0.14 g

(2) Design of vertical acceleration response spectra for MCE and OBE

Generally, vertical ground motion prediction was established together with horizontal ground motion. Therefore, recent studies were reviewed by focusing on the ratio of vertical to horizontal response spectral acceleration (V/H ratio).

Each of the listed literature below mentioned a relationship between horizontal and vertical ground motion:

- According to the ICOLD guideline (1989), vertical PGA may be conservatively taken between two-thirds and one-half of horizontal PGA outside the near-field.
- According to Newmark and Hall (1978), it is recommendable that the design motions in the vertical direction are taken as two-thirds of the value in the horizontal direction across the entire frequency range in the design of nuclear power plants.
- Several recent studies have mentioned the vertical to horizontal spectral ratio (V/H ratio). The V/H ratio depends on the natural periods, hypocentral distance, earthquake magnitude, and so on. Several designed V/H ratios were proposed.
- Shown in **Figure 7.3.18** is the V/H ratio in Boomer et. al. (2011). This figure shows three V/H ratio models. The characteristics of the three models are as follows:
 - The V/H ratios for each model are less than 0.6 for period ranges longer than 0.1 s.
 - The V/H ratios are different for each model. They are 0.6-0.9 at period ranges shorter than 0.1 s. Also, the values peak (V/H ratio over 1) at period ranges around 0.05 s.

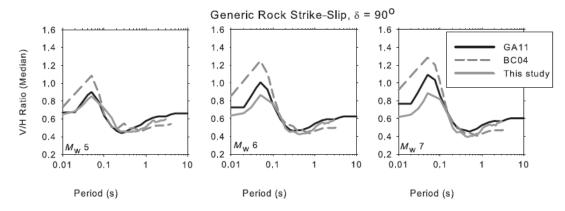
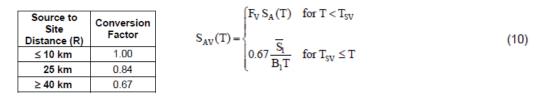



Figure 7.3.18: Comparisons of Selected V/H Ratios by Boomer et al. (2011)

- The U.S. Army Corps of Engineers (2007) also showed the methods for setting the V/H ratio. There is a peak period in the vertical spectrum which is shorter than the horizontal spectrum. The design vertical spectrum is taken as two-thirds of the horizontal spectrum at periods longer than T_{sv} . T_{sv} indicates the peak period in the vertical spectrum. At periods shorter than T_{sv} , the V/H ratio depends on the hypocentral distance. It is taken as 1 if the hypocentral distance is shorter than 10 km, and is 0.67 if the distance is longer than 40 km. Then, it is taken as 0.84 if the hypocentral distance is from 10 km to 40 km.
 - b. Construction of standard vertical spectrum.

(1) To determine the standard spectrum it is necessary to compute first the period defining the upper limit of the maximum vertical amplification plateau, given by

$$T_{SV} = \frac{0.67}{F_V} T_S$$
(9)

(2) The standard vertical spectrum is then defined as follows:

Figure 7.3.19: Construction of Vertical Spectrum by the U.S. Army Corps of Engineers (2007)

Bozorgnia and Campbell (2004) proposed a simplified V/H ratio. They proposed two models of rock sites at a hypocentral distance that is shorter than 20 km and 60 km. **Figure 7.3.20** shows the V/H ratio by Bozorgnia and Campbell (2004). In the case with a distance shorter than 20 km, the V/H ratio is about 0.9 for periods of 0.1-0.4 s, and 0.5 for periods longer than 0.3 s. Then in the case with a distance longer than 60 km, the V/H ratio is 0.67 for periods of 0.1-0.4 s, and 0.5 for periods longer than 0.3 s.

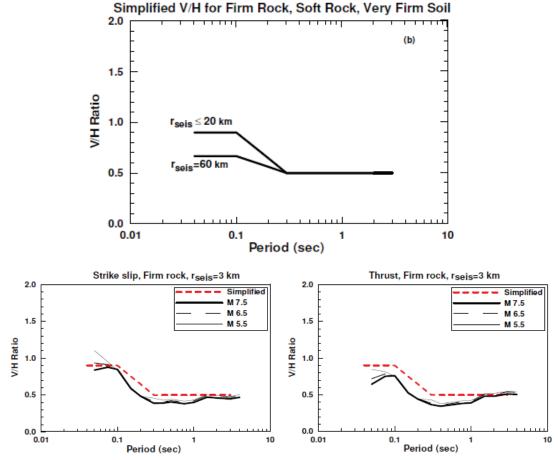
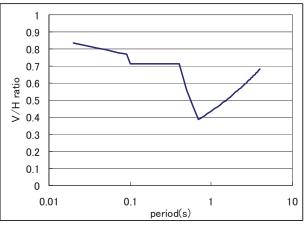
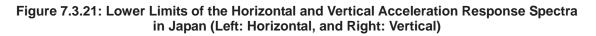




Figure 7.3.20: Simplified V/H Spectra by Y. Bozorgnia and K. W. Campbell (2004)

 In the Guidelines for Seismic Performance Evaluation of Dams during Large Earthquakes in Japan (2005), the lower limits of the horizontal and vertical acceleration response spectra were constructed. The average V/H ratio is about 0.7 (≒2/3) qualitatively.

Source: http://www.nilim.go.jp/lab/fdg/

Based on literature review, the V/H ratio was set as follows:

 Recent several studies were mentioned that the V/H ratio depends on the hypocentral distance, earthquake magnitude, and natural periods. The V/H ratio is high in case of a short hypocentral distance and a short period range.

- 2) According to the ICOLD guideline (1989), the vertical PGA may be conservatively taken between two-thirds and one-half of the horizontal PGA. According to the U.S. Army Corps of Engineers (2007), the V/H ratio is taken as two-thirds at 40 km of the hypocentral distance.
- In the Guidelines for Seismic Performance Evaluation of Dams during Large Earthquakes in Japan (2005), the average V/H ratio is about 0.7 (≒2/3) qualitatively.
- However, the V/H ratios are different in each study. Several V/H ratio models were proposed. Therefore, a uniform V/H ratio should be developed in the future.

Based on the review results above, the vertical PGA is taken as two-thirds of the horizontal PGA, and V/H ratio is taken as two-thirds of all the natural period range.

The horizontal and vertical PGA values for MCE and OBE are presented in **Table 7.3.5** and the corresponding response spectra are shown in **Figure 7.3.22** and **Figure 7.3.23**.

Table 7.3.5: Horizontal and Vertical PGA Values for MCE and OBE

Earthquake	PGA (Horizontal)	PGA (Vertical)
MCE	0.54	0.36
OBE (200 years)	0.14	0.09

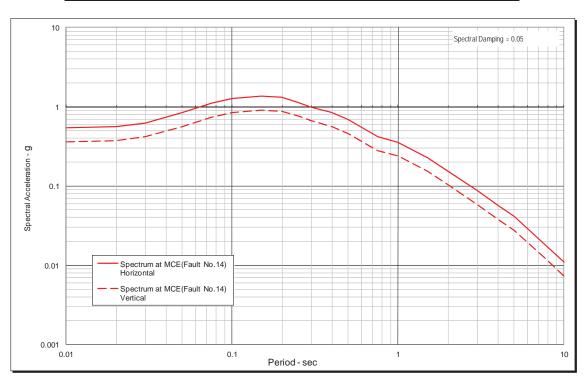


Figure 7.3.22: Horizontal and Vertical Response Spectra for MCE

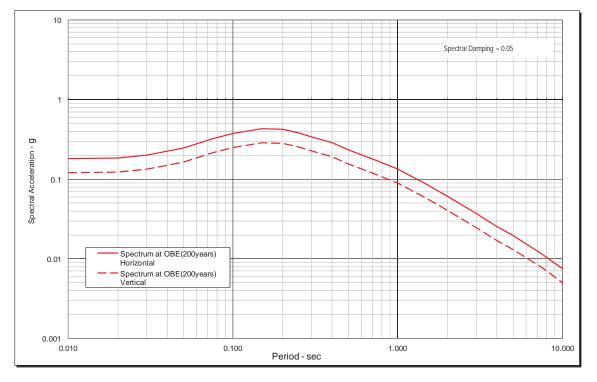
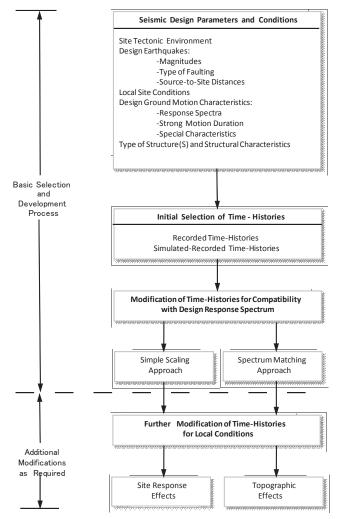



Figure 7.3.23: Horizontal and Vertical Response Spectra for OBE (200 Years)

8. Preparation of Earthquake Time Histories for MCE and OBE

In this section, the earthquake time histories for MCE and OBE for the dynamic response analysis of dam are prepared. Following the U.S. Army Corps of Engineers (2003), the procedure for developing time histories for seismic analysis is shown in **Figure 7.3.24**.

Source: U.S. Army Corps of Engineers(2003) Engineering and Design - Time History Dynamic Analysis of Concrete Hydraulic Structures [EM 1110-2-6051]

Figure 7.3.24: Procedure for Developing Time Histories for Seismic Analysis

(1) Selection of earthquakes

According to the U.S. Army Corps of Engineers (2003), it is important that the designed earthquake and conditions are similar to the selected ones with regards to the tectonic environment around the dam site, the earthquake magnitude, the hypocentral distance, the type of faulting, and local site conditions (e.g., rock or soil). Time histories that are similar to the design conditions should be selected from available strong ground motion databases.

The criteria for the selection of time histories for the Dasu Dam site are as follows:

- Large and active tectonic lines or faults are distributed near the dam site. The type of faulting is reverse or strike-slip. They are distributed within 50 km.
- The earthquake magnitude is assumed at about 6.0-8.0.

According to the U.S. Army Corps of Engineers (2003, 2007), the seismic analysis for concrete dam was shown using strong ground motion as observed from an earthquake

with a magnitude greater than 6.5. **Table 7.3.6** shows the strong ground motions observed by the U.S. Army Corps of Engineers (2003, 2007).

Table 7.3.6: List of Strong Ground Motions Observed by the U.S. Army Corps of
Engineers (2003, 2007)

Earthquake	Time	Region	Depth(km)	Mechanism	Mw	station	Closest distance to fault(km)	Site Geology
Parkfield	1966-06-28 04:26:14 UTC	California	10	Strike-slip	6.1	Parkfield, CA Cholame 8W	11.2	Thin Alluvium;Sandstone
San Fernando	1971-02-09 14:00:41 UTC	California	13	Reverse	6.6	Pacoima Dam, CA	3.5	Highly jointed Diorite Gneiss
Morgan Hill	1984-04-24 21:15:18 UTC	California	8.5	Strike-slip	6.1	Coyote Lake Dam, CA - San Martin; Station E	1.5	Fill over carbonate rock
Loma Prieta/Santa Cruz Mountains	1989-10-18 00:04:15 UTC	California	17.48	Reverse- Oblique	7	Gilroy Array Sta 1, CA – Gavilan College,	2.8	Rock
Northridge	1994-01-17 12:30:55 UTC	California	17.5	Reverse	6.7	Newhall, CA – Sun Oil Co – W Pico Canyon Blvd	9.4	Nonmarine Deposit
Northridge	1994-01-17 12:30:55 UTC	California	17.5	Reverse	6.7	Pacoima Dam, CA	11.7	Highly jointed Diorite Gneiss

The observed strong ground motions listed in **Table 7.3.6** have been caused by earthquakes with magnitude greater than 6.5, and the types of faulting are reverse or strike-slip. Moreover, the hypocentral distance is within 20 km. Therefore these site conditions are similar to the Dasu Dam site.

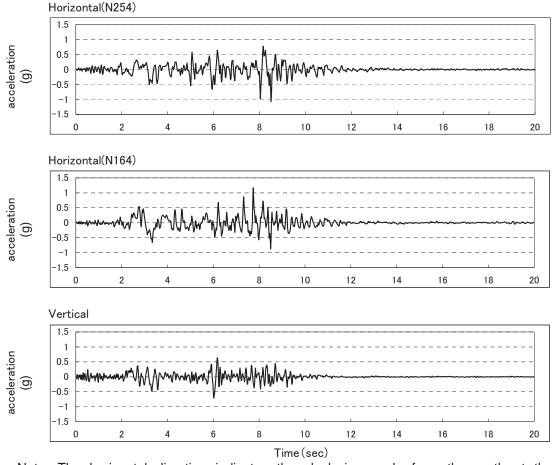

Three time histories, observed at Pacoima Dam during the San Fernando Earthquake, at Coyote Lake Dam during the Morgan Hill Earthquake, and at Gilroy Array Sta. 1 during the Loma Prieta Earthquake, were selected because their site geologies are of rock and their hypocentral distances are close. These time histories were collected from the website of the Consortium of Organizations for Strong-Motion Observation Systems (COSMOS).

Table 7.3.7 shows the parameters (e.g., PGA, PGV) of selected time histories. Time histories which observed the maximum PGA of two components were selected. Such are highlighted in gray in **Table 7.3.7**.

Earthquake	Time	Region	Depth (km)	Mechanism	Mw	station	Closest distance to fault(km)	Site Geology	Component	PGA(gal)	PGA(g)
									Horizontal(164)	1,148.1	1.17
San Fernando	1971-02- 09 14:00:41 UTC	California	13	Reverse	6.6	Pacoima Dam, CA	3.5	3.5 Highly jointed Diorite Gneiss	Horizontal(254)	1,055.0	1.08
							Vertical	696.0	0.71		
									Horizontal(90)	433.6	0.44
Loma Prieta	1989-10- 18 00:04:15 UTC	California	17.48	Reverse- Oblique	7	Gilroy Array Sta 1, CA – Gavilan 2.8 College,	Rock	Horizontal(0)	426.6	0.44	
									Vertical	206.4	0.21
									Horizontal(N285)	1,137.8	1.16
Morgan Hill	1984-04- 24 21:15:18 UTC	California	8.5	Strike-slip	6.1	Coyote Lake Dam, CA - San Martin; StationE	1.5	Fill over carbonate rock	Horizontal(N195)	639.8	0.65
									Vertical	376.3	0.38

Table 7.3.7: List of Parameters of Selected Time Histories

Note: The horizontal direction indicates the clockwise angle from the north at the seismometer. N164 indicates 164° from north to south.

Figure 7.3.25: Recorded Acceleration Time Histories at Pacoima Dam during the 1971 San Fernando Earthquake

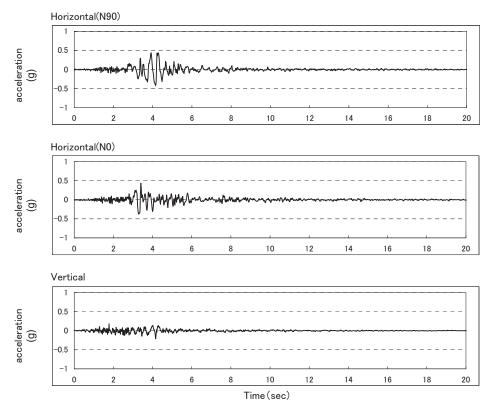


Figure 7.3.26: Recorded Acceleration Time Histories at Gilroy Array Sta. 1 during the 1989 Loma Prieta Earthquake

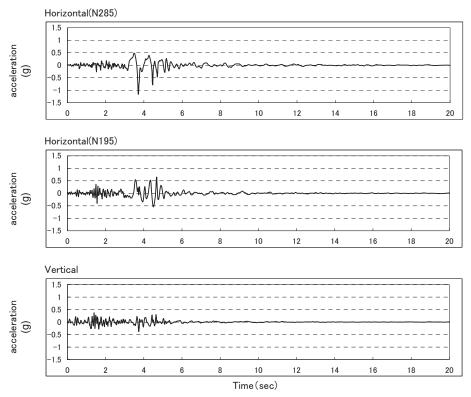


Figure 7.3.27: Recorded Acceleration Time Histories at Coyote Lake Dam during the 1984 Morgan Hill Earthquake

(2) Preparation of earthquake time histories for MCE and OBE

In preparing the time histories data, there are two approaches. The first is the spectrum matching approach, and the other is the simple scaling approach. In this study, the spectrum matching response spectra were selected because they are set by the attenuation relationship based on the many observed earthquake time histories.

The software ARTEQ for Windows was used for the spectrum matching for compatibility with the response spectra for design. A sample display of ARTEQ is shown in **Figure 7.3.28**.

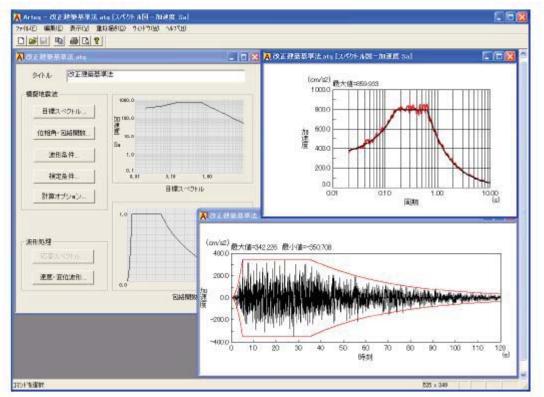


Figure 7.3.28: ARTEQ for Windows (KOZO KEIKAKU ENGINEERING Inc.)

The acceleration response spectra for design and the selected time histories are as follows:

- Acceleration response spectra for design
 - MCE
- (Horizontal and vertical components)

(Horizontal and vertical components)

Selected time histories

OBE (200 years)

- Records at Pacoima Dam during the 1971 San Fernando Earthquake (Horizontal N164°and vertical components)
- Records at Coyote Lake Dam during the 1984 Morgan Hill Earthquake (Horizontal N285°and vertical components)
- Records at Gilroy Array Sta. 1 during the 1989 Loma Prietra Earthquake (Horizontal N90° and vertical components)

For MCE:

Table 7.3.8 shows the results of spectral matched time histories for MCE. **Figure 7.3.29** shows the spectral matched time histories, the comparison with the design (target) response spectrum, and the matched spectrum using ARTEQ. In the spectrum's figure, the lower limit of the natural period range is 0.04 s (25 Hz frequency) at Nyquist frequency because the sampling period of each of the selected time histories is 0.02 s (50 Hz frequency).

Duration is defined as the time required to build up from 5% to 95% of the integral.

Earthquake	Time	Region	Depth(km)	Mechanis	Mw	station	distance to	Site Geology	Component		M	DE	
Eartriquake	Time	Region	Deptri(km)	m	WIW	station	fault(km)	Site Geology	Component	PGA(gal)	PGA(g)	PGV(kine)	Duration(sec)
San	1971-02- 09 14:00:41	California	13	Reverse	7	Pacoima Dam, CA	3.5	3.5 Highly jointed	Horizontal	531.2	0.54	45.0	11.28
Fernando	UTC	Galifornia	10	Treverse.	,		Diorite Gneiss	Vertical	354.1	0.36	29.3	14.72	
Loma	1989-10- 18 00:04:15	California	17.48	Reverse	7	Gilroy Array Sta 1, CA - Gavilan	2.8	Rock	Horizontal	531.0	0.54	41.8	10.88
Prieta	UTC	Galifornia	17.40	-Oblique	/	College,	2.0		Vertical	353.3	0.36	20.0	11.74
M	1984-04-		8.5	Strike-	6	Coyote Lake Dam,		Fill over	Horizontal	530.6	0.54	37.0	6.08
Morgan Hill	24 21:15:18 UTC	California	8.0	slip	0	CA – San Martin; StationE	1.5	1.5 Fill over carbonate rock	Vertical	354.0	0.36	19.5	7.94

 Table 7.3.8: Results of Spectral Matched Time Histories for MCE

The three time histories (Figures 7.1.29, 7.1.30 and 7.1.31) showed the same PGA value after being fit with the same acceleration spectrum. However, the PGV and the duration were different among the time histories due to the different phase characteristics (i.e., intervals between peaks and valleys of waveform). A high PGV produced high stress in the dam body, and a long duration affected structure stability. Therefore it is recommended that at least two time histories are used for the dynamic analysis. These are as follows:

- 1) 1971 San Fernando Earthquake
- 2) 1989 Loma Prietra Earthquake

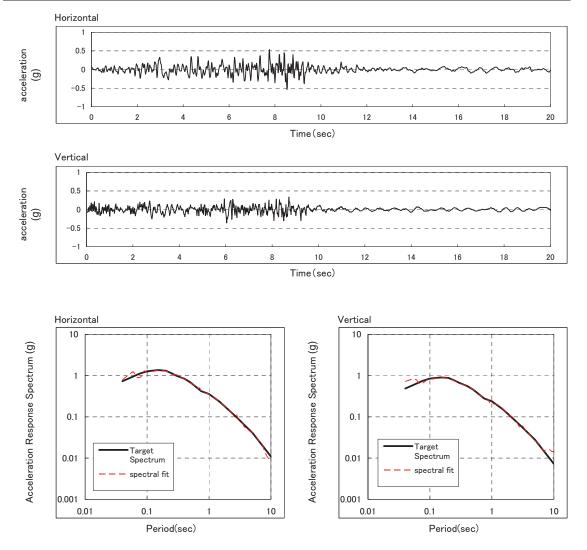


Figure 7.3.29: Time Histories and Response Spectra for MCE Using Records at Pacoima Dam during the 1971 San Fernando Earthquake (Horizontal N164° and Vertical Components)

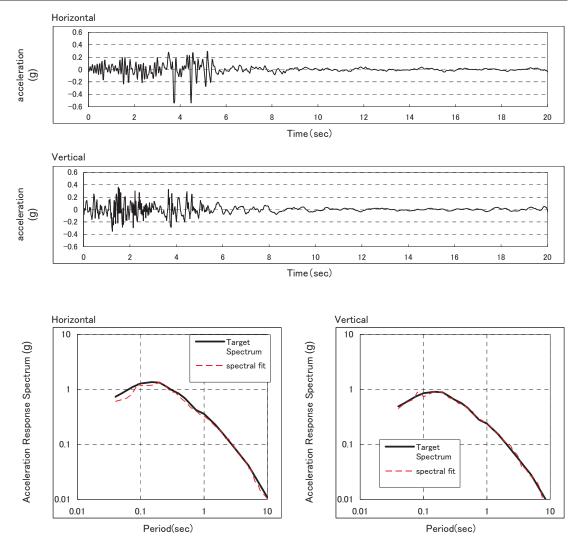


Figure 7.3.30: Time Histories and Response Spectra for MCE Using Records at Coyote Lake Dam during the 1984 Morgan Hill Earthquake (Horizontal N285° and Vertical Components)

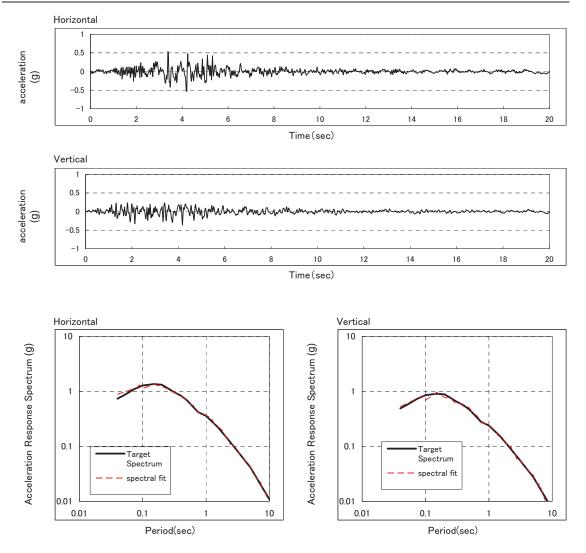


Figure 7.3.31: Time Histories and Response Spectra for MCE Using Records at Gilroy Array Sta. 1 during the 1989 Loma Prietra Earthquake (Horizontal N90° and Vertical Components)

For OBE (200 years):

Table 7.3.9 shows the results of spectral matched time histories for OBE (200 years). **Figure 7.3.32** to **Figure 7.3.34** show the spectral matched time histories, the comparison with the design (target) response spectrum and the matched spectrum using ARTEQ.

Earthquake	Time	Dogion	Donth(km)	Mechanism	MAL	Closest station distance to					OBE 200years		
Eannquake	Time	Region	Deptn(km)	Wechanism	IVIW	Station	fault(km)	Sile Geology	Component	PGA(gal)	PGA(g)	PGV(kine)	Duration(sec)
San	1971-02-09	California	13	Reverse	7	Pacoima Dam, CA	3.5	Highly jointed Diorite Gneiss	Horizontal	137.2	0.14	16.5	8.20
Fernando	14:00:41 UTC	CalifOffia	15	Reveise	'	Facolina Dani, CA	5.5		Vertical	91.5	0.09	11.4	15.08
Loma Prieta	1989-10-18	California	0.17	Reverse-	7	_ Gilroy Array Sta 1,	2.8	Rock	Horizontal	137.2	0.14	13.9	9.16
Lonia Phela	00:04:15 UTC	Gailloffila	17.48	Oblique	1	CA - Gavilan College,	2.0	KUUK	Vertical	91.5	0.09	6.9	10.00
Morgan Hill	1984-04-24	California	8.5	Strike-slip	6	Coyote Lake Dam, CA - San Martin:	15	1.5 Fill over carbonate rock	Horizontal	137.2	0.14	8.1	7.04
worgan Hill	21:15:18 UTC	GamOITIla	0.0	Suike-Silp	υ	StationE	1.0		Vertical	91.6	0.09	5.7	13.86

Table 7.3.9: Results of the Spectral Matched Time Histories for OBE (200 Years)

The three time histories showed the same PGA value after being fit with the same acceleration spectrum. However, the PGV and the duration were different among the time histories due to the different phase characteristics (i.e., intervals between peaks and valleys of waveform). A high PGV produced high stress in the dam body, and a long duration affected the structure stability. Therefore, it is recommended that at least two time histories are used for the dynamic analysis. These are as follows:

- 1) 1971 San Fernando Earthquake
- 2) 1989 Loma Prietra Earthquake

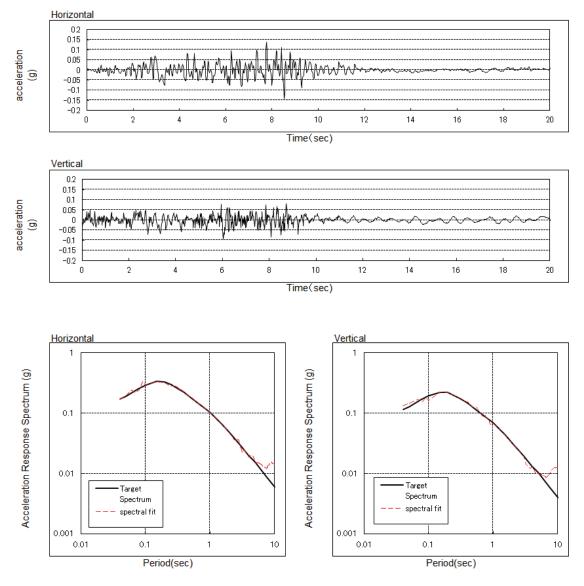


Figure 7.3.32: Time Histories and Response Spectra for OBE (200 Years) by Spectral Matching Approach Using Records at Pacoima Dam during the 1971 San Fernando Earthquake (Horizontal N164° and Vertical Components)

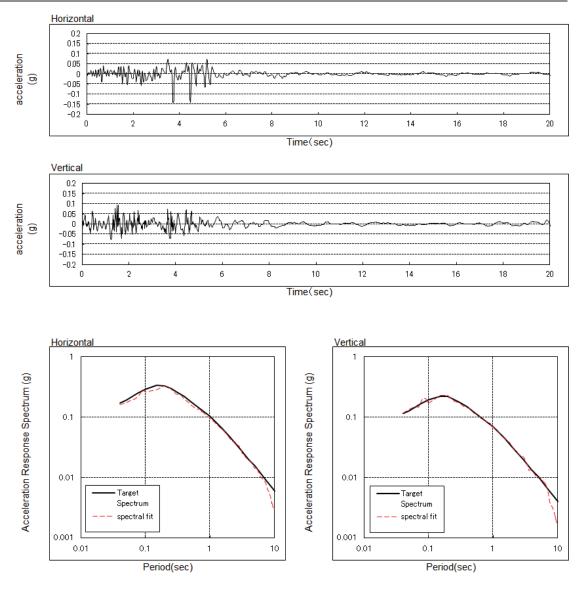


Figure 7.3.33: Time Histories and Response Spectra for OBE (200 Years) by Spectral Matching Approach Using Records at Coyote Lake Dam during the 1984 Morgan Hill Earthquake (Horizontal N285° and Vertical Components)

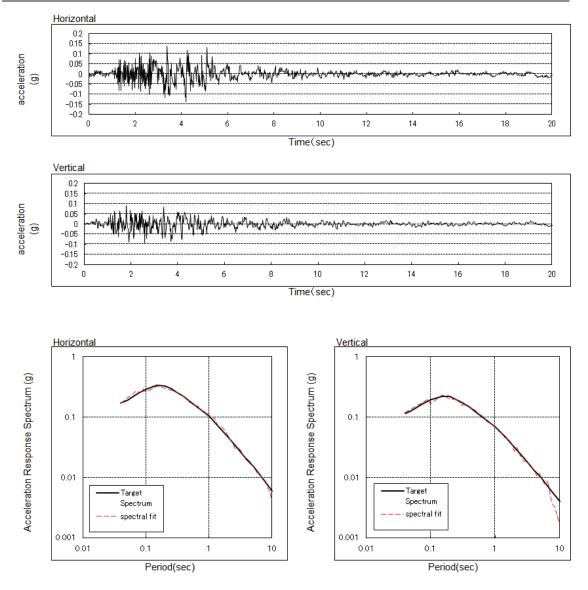


Figure 7.3.34: Time Histories and Response Spectra for OBE (200 Years) by Spectral Matching Approach Using Records at Gilroy Array Sta. 1 during the 1989 Loma Prietra Earthquake (Horizontal N90° and Vertical Components)

9. Conclusions and Recommendations

Referring to **Table 7.3.10**, which shows the comparison between the FS in 2009 and the results obtained in the detailed design (DD), the conclusions and recommendations are explained below.

Descriptions		FS 2009		DD 2012
	Results	Recommended	Results	Recommended
1) PGA by deterministic procedure	0.72 g in max	Order of 0.50 g	0.54 g (Fault No. 14)	0.54 g for Fault No. 14 fixed after identification as active tectonics
2) PGA by probabilistic procedure 200 years 10,000 years	0.18 g -	0.18 g -	0.09-0.14 g 0.42-0.64 g	0.14 g Order of 0.5 g
3) Response spectra 200 years 975 years MCE	- 0.29 g 0.50 g	- 0.29 g 0.50 g	0.14 g - 0.54 g (Fault No. 14)	0.54 g
 4) Dynamic Analysis for Dam MCE PGA (Design) at rock surface OBE PGA (Design) at rock surface SEE PGA (Design) at rock surface 	0.50 g 0.18 g (200 year return period) -	0.50 g 0.18 g (200 year return period) -	0.54 g (Fault No. 14) 0.14 g (200 year return period) 0.42-0.64 g (10,000 year return period)	0.54g for Fault No.14 fixed after identification as active tectonics 0.14 g Order of 0.5 g
5) Psedo-static analysis for Dam *3) MCE, Horiz. Vertical OBE, Horiz. Vertical		0.33g (2/3PGA) *1) 0.22 g(2/3horiz.) 0.12g (2/3PGA) 0.08g'2/3horiz.)		0.36g (2/3PGA) 0.24 g(2/3horiz.) 0.09g (2/3PGA) 0.06g (2/3horiz.)
6) Underground complex MCE, Horiz. Vertical OBE, Horiz. Vertical				0.18g (1/2 of dam) *2) 0.12g(1/2 of dam) 0.045g (1/2 of dam 0.03g(1/2 of dam)
7) Ordinary Facilities; OBE, Horiz. (200-year period)		0.15g	0.14g	0.15g/0.3g

Table 7.3.10: Summary of Seismic Hazard Assessment Results in the FS in 2009 and this Study

Note:

:*1) Refer to EM1110-2-6053, Page 7-2 (May2007)

*2) PGA in underground is a half of surface.

*3) Vertical earthquake component in pseudo-static analysis for a dam shall not be combined with horizontal earthquake (ref to Article 4.2 of EM1110-2200).

- As summarized in **Table 7.3.10**, it is concluded that the maximum PGA at the Dasu Dam site is 0.54 g, as estimated using deterministic procedures associated with

the assumed active faults and lineaments.

- Through the probabilistic procedure, the PGA at the return period of 10,000 years corresponding to SEE was estimated to be in the order of 0.50 g. The PGA for MCE (0.54 g) is higher than that of SEE (0.50 g). Therefore, the peak bedrock acceleration to be applied for the dynamic analysis of the RCC main dam should be consistent with that of the PGA for MCE (0.54 g).
- It was noted that the PGA for the return period of 200 years under the probabilistic procedure is 0.14g. It is smaller than the 0.18 g obtained in the FS in 2009. This is due to the period of earthquake data and application of a different probabilistic method from that of the FS in 2009.
- The earthquake time histories for MCE and OBE for the dynamic analysis are summarized in **Table 7.3.11**.

Туре	Recommended Spectral Matched Time Histories
MCE	1. 1971 San Fernando Earthquake
	2. 1989 Loma Prietra Earthquake
OBE (200 years)	1. 1971 San Fernando Earthquake
	2. 1989 Loma Prietra Earthquake

Tabla	7311.	Earthquake	Timo	Historias	for	MCE and O	BE
Iable	1.3.11.	carinquake	Inne	пізіопез	101		DE

Three time histories were prepared for the stability analysis of the dam under both MCE and OBE. They showed the same PGA value after being fit with the same acceleration spectrum. The PGV and the duration were different among them due to their different phase characteristics. A high PGV produced high stress in the dam body, and a long duration affected the structure stability. The least two time histories shown in **Table 7.3.11** and having different phase characteristics are recommended to be used for the dynamic analysis.

<u>References</u>

- International Commission on Large Dams (ICOLD) (1989); Guidelines for selecting Seismic Parameters for Large Dams, Paris.
- Matsuda, T, Tsukazaki, T, Haginoya M (2000), Distribution of active faults and historical shallow earthquakes of Japanese Islands with a catalog of on-land seismogenic faults and earthquakes, Active Faults Research, No.19, pp.33-54. (in Japanease)
- Wells, D. L., and K. J. Coppersmith (1994), New empirical relationship among magnitude, rupture length, rupture width, rupture area, and surface displacement, Bull. Seismol. Soc. Am., 84, pp.974-1002.
- Nowroozi, A.A. (1985), Empirical relations between magnitudes and fault parameters for earthquakes in Iran. Bull. Seism.Soc. Amer., 75, pp.1327-1338.
- Slemmons et al. (1982); Evaluation of active faulting and associated hazards, in Studies in geophysics – active tectonics: National Academy Press, Washington, DC, p.45-62.
- Newmark, N. M., and Hall, W. J. (1978) Development of Criteria for Seismic Review of Selected Nuclear Power Plants," Report NUREG/ CR-0098, U.S. Nuclear Regulatory Commission, Rockville, MD.
- Bommer JJ, Akkar S, Kale O (2011), A Model for Vertical-to-Horizontal Response Spectral Ratios for Europe and the Middle East, BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2011, Vol:101, pp-1783-1806.
- U.S. Army Corps of Engineers (2007) Earthquake Design and Evaluation of Concrete Hydraulic Structures [EM 1110-2-6053], 2007, 247 pp.
- Bozorgnia, Y., and K. W. Campbell (2004). The vertical-to-horizontal spectral ratio and tentative procedures for developing simplified V/H and vertical design spectra, J. Earthq. Eng. 4, no. 4
- National Institute for Land and Infrastructure Management, MLIT, JAPAN, River Department, Water Management and Dam Division (2005) Guidelines for Seismic Performance Evaluation of Dams during Large Earthquakes. http://www.nilim.go.jp/lab/fdg/l2/l2.html

Annex – 7.4

DAM SAFETY AND ITS MONITORING

Dam Safety

Dam safety is given utmost importance in the Project design. The detail treatment of the subject is given in the design documents. A summary of safety parameters adopted in the project design and operation is given below:

- **Safety against hydraulic pressure** from fully supply level (FSL at EL.950m) and high flood level (SCF at EL.959.5m).
- **Safety against combined pressure of water and soil (sediment)**; this is structural part of the design. This condition will not develop on initial filling, but may develop after years of reservoir operation if no sediment above flushing facilities is removed.
- **Safety against overturning**: Each monolith layer is safe against overturning with respect to the downstream toe of the dam. The resultant force acting on the dam body falls within the middle-third of the foundation base for the normal operating conditions and during construction and its distance from the foundation edge falls within the base width under extreme loading conditions (SCF/ PMF or earthquake). Therefore there is no tension over the allowable stress in the concrete dam foundation under any construction or operational state.
- **Safety against flood inflow**. Additional flood storage of 9.5m in height (EL.950.0m EL.959.5m) has been provided in the design to accommodate the safety check flood (SCF/PMF).
- Safe against spill over due to extreme waves or flood events such as GLOFs. The safety check flood (SCF) of the dam is designed to considering a combined event of historical GLOFs and rainfall records and natural dam failures. A flood surcharge of 9.5m in height has been provided to accommodate flood water from GLOF.
- **Safety against waves generated by landslides in reservoir**. The chances of landslides fill during and after reservoir filling cannot be ruled out. The land slide wave may be absorbed by 9.5m provision in the dam design above FSL.
- Safety against hydrological surges from future upstream dams: According to the design reports of Bunji hydropower project, at the downstream of Bunji, for short-time, during peaking hours (4 hours daily from 18:00 to 22:00 in summer) a surge wave with a maximum height of 5 to 6m will travel from the tailrace channel along the river to Basha reservoir. This surge will not affect the Dasu dam directly. However, the 9.5m flood storage incorporated in Dasu project, will absorb any of such surges.
- **Safety against scour in plunge pool scours depth**. The discharge from spillway will flip from the bucket into the air and fall in the pool of water below. The formation of eddies will dissipate the energy. The process will scour the river bed and depth of the water in the plunge pool will increase. This depth will attain equilibrium and reach no scour no deposit. The foundation of the dam is below the maximum scour depth is surety of the safety.
- **Safety against Tilt or differential settlement**. The foundation of the dam is on firm fresh rock. There is no chance of differential settlement. The RCC dam body also has no settlement.
- **Safety against leakages.** The dam design has provided inspection galleries with drain holes. These will allow monitoring of the dam and allow releasing

uplifting after the fill. The high quality concrete will allow only very little transmissibility, especially GEVR at the upstream surface of dam. Should the inflow indicate an abnormal increase, the operator will have to investigate the reason and eliminate it.

- Safety against land sliding during reservoir filling and drawdown. The filling of the dam for the first time, and subsequently for operation will result in increase of pore pressure. If the rock is poor, it may fail and result in landslide. The pore pressure developed during filling will create reverse hydraulic gradient. This can result in the failure of the slope and creating a landslide. The fill and emptying the reservoir must be kept at low rate for safety of dam. The first filling of the reservoir will be carried out at a rate of 1 m/day while monitoring slope failures. During flushing operations a filling rate of 3 m/day and drawdown rate of 4 m/day will be adopted in the first filling manual. However, it is expected the landslide prone areas will be stabilized after a few cycles of filling and drawdown.
- Safety during repeated drawdown cycles and fill cycles if used for peaking power. It is important to keep surveillance during operation and keep studying the slope movement. For this purpose the slopes have been mapped and their movement recorded to forecast the landslides. This has to be part of operation manual.
- Safety against fire: Fire protection system (comprising fire protection and fire monitoring system, and firefighting system) will be established in the underground powerhouse. Water distribution network with 50m³ storage tank will be established for firefighting system. Common fire extinguishers of type A (common combustion), B (flammable liquid and gas) and C (live electrical equipment) will also be installed.
- Preparation of annual dam and reservoir safety report for review by dam experts of WAPDA and World Bank. This has to be the part of operation manual.

Dam Safety Monitoring

Monitoring is an important tool to ensure dam safety. A large number of instrumentation sensors will be installed in the body and foundation of Dasu dam for the purpose of monitoring various important aspects of behaviour during construction, first filling and in operation. The total number of instruments installed makes an allowance for the expected situation that some will be lost and cease to function during construction and early operation. The instruments will include inclinometers, piezometers, pendulums, leakage weirs, seismometers and surface temperature.

WAPDA looks after safety of its dams through Dam Safety Organization (DSO). After completion of the construction, DSO will look after the safety of Dasu dam. The dam safety Programme consists of Three Tiers:

- "The First Tier monitoring is carried out by the operation and maintenance (O&M) staff of the project. This consists of observing the responses of the vast network of instruments embedded in the various structures. The data collected thus is compiled and analyzed to identify the areas of abnormal behavior and to devise measures for immediate action.
- The Second Tier monitoring is carried out by DSO. It is done by keeping a constant watch on the flow of instrument response data of the project structures through Tier One, analyzing it using the latest interpretation techniques, locating the areas of abnormal behavior and suggesting short term and long term solutions. DSO also undertakes annual inspections to see the physical condition of the works and to make on site appraisal of performance data. At the end of the inspection, a comprehensive report is issued

commenting upon the physical condition of the works, abnormalities observed, their likely causes and possible solutions. Its experts also visit projects, whenever any abnormal situation is reported, to study the phenomenon in situ and suggest corrective measures. In summary DSO's functions under Second Tier are as below:

- Carrying out annual inspection and issuance of inspection report, identifying physical inadequacies, erratic performances, possible causes and the corrective measures.
- Compilation, tabulation and interpretation of performance data of project structures and issue biannual safety evaluation reports.
- Paying site visits to study, diagnose and prescribe problems of emergent natures.
- The Third Tier monitoring implies Periodic Inspections which are undertaken at an interval of 2 to 5 years, depending upon the hazard value and age of the dam. This is supposed to be carried out by an external team, who are not part of WAPDA, DSO and O&M staff of Dasu dam. The external team will prepare a comprehensive inspection reports reviewing the health of the structures, identifying the areas of concern and suggesting short term and long term corrective measures".

of Amioultural Land Lload in Terroop Culti-

Annex – 8.1

ELIGIBILITY AND ENTITLEMENT MATRIX

Loss Item 1: Loss of Agricultura	s Item 1: Loss of Agricultural Land Used in Terrace Cultivation									
Unit of Entitlement	Entitlements	Application Guidelines	Additional Services							
District Revenue Officer (DRO) through Land Acquisition Survey	 land agreed between PAPs and the Government (project) Cultivable Plot (1/2 kanal) close to the self-managed resettlement site; Dislocation Allowance of PKR 500/- (Five hundred) per kanal but the total 	Coordination Officer (DCO) and Project Resettlement Office (PRO); and also unit	assisted by the PRO to							
Implementation Issues:										
 The VCs were established by the The Unit Rates to be used in com or representative, DCO or representative, DCO or representative, DCO or represented of the community presented during the community presented during to the community in the project has laws and customs. Therefore, form 	 Landowners will be informed of the details of the land acquisition and compensation process, resettlement package and payment procedure. The VCs were established by the Assistant Coordination Officer (ACO) with recommendation of the village Malik in every affected village The Unit Rates to be used in computing Negotiated Value (NV) for agricultural land will be determined at a Jirga including the Village Committee (VC), DRO or representative, DCO or representative, and PRO established under the Project Director PD-DHP (called the Price Evaluation Committee, duly formed and notified by PD-DHP). The valuation process will take into consideration the rates adopted by the Diamer-Basha Dam Project as this was a request of the community presented during the Grand Jirga held in April and September, 201. The community in the project has derived the right to use homestead, agricultural and other land, by virtue of traditional land tenure under their traditional laws and customs. Therefore, formal land ownership documents as title deeds and cadastral maps have not been prepared for land in this area. Therefore, the Land acquisition survey is conducted by the DRO to establish land ownership and boundaries as these details are required to issue notice under Section 4 of LAA 1894. 									
Unit of Entitlement	Entitlements	Application Guidelines	Additional Services							
Owner(s) identified by DRO through Land Acquisition Survey	 Negotiated Value (NV) of land. Dislocation Allowance @ PKR 750/- (Seven hundred and fifty) per kanal but the total amount will not exceed PKR 5,000/- (Five thousand). Affected owners will be entitled to a free one Marla plot along the realignment of KKH for commercial land and free 1/2 kanal plots for 	 NV will be computed by the DRO based on the Unit Rates agreed upon at a Jirga comprising VC, DRO, DCO and PRO; and also unit rates of Diamer-Basha Dam Project; Project through DRO will pay for the land. Project will develop the resettlement sites with provision of basic 	Identified owners will be assisted by the Project to prepare legal documents in support of their ownership.							

	 residential structures. 4. Provision of basic infrastructures at new resettlement area such as access road, drinking water supply, sanitation, schools, electricity, mosque, health facility and commercial area free of cost. 5. An additional allowance equal to the price of 1/2 kanal plot in project area for Affected PAPs who will not receive a plot and will be relocated by themselves. 	 roads All the PAPs who will be relocated at the resettlement sites will receive a free plot however, others will receive average price of the plot (within the project area) computed by the DRO. Those PAPs who will be relocated by themselves collectively out of relocation sites developed by the project but within the project district will also be eligible for the site development and basic amenities. however PAPs who relocate outside the district will not be eligible for site development and basic amenities 					
Implementation Issues:							
located and preferred to relocate valley where they have houses a preferred self-managed site at a 2. PAPs will be informed of the deta 3. NV will be determined and appro 4. Land titling will be completed through	 Consultations with Project Affected Persons (PAPs) revealed that most of them did not want to move away from the valley where their present abodes are located and preferred to relocate at a higher elevation within the same valley. This is mainly due to their seasonal migration to different elevations of the valley where they have houses at these different elevations as described under subheading 2.1.4 in Section 2. Therefore, the PAPs elected to move to a preferred self-managed site at a higher location in the same valley. PAPs will be informed of the details of the compensation policy, resettlement package and payment procedure. NV will be determined and approved for the project following the procedure as stated under Loss Item 1 above. Land titling will be completed through the land acquisition survey conducted by the DRO before issuance of notice under section 4. 						
Loss Item 3: Loss of Communa							
Unit of Entitlement	Entitlements	Application Guidelines	Additional Services				
 VC for communal property; All villagers losing access to common land areas for pasture and fuel wood 	 Negotiated Value (NV) of land will be paid to the VC A plot in the self-managed resettlement site for each communal property as schools, mosque, burial ground, health center, community center etc. The project will construct the structures for common properties in the self-managed resettlement sites selected by the PAPs and the siting of the common properties will be decided by the VC. 	 NV will be computed by the DRO based on the Unit Rates agreed upon at a Jirga comprising VC, DRO, DCO and PRO; Project/DRO will pay for the land of common properties. The Project will construct the common properties at each resettlement site with planning inputs and monitoring by VC of each resettlement site. WAPDA/Project will make arrangements with DCO and Forest Department for the community in each resettlement site to use sustainably demarcated areas for 	1. VC will be assisted by the PRO to organize legal documents in support of the compensation payments for the common properties. Social and Resettlement Unit with guidance from an experienced organization in this field will assist and guide the community in utilizing the common land area				

2. The VC will be responsible for the re-			reated by the DCO (with
		areas but suitable as pasture land, will be dema resettled in the site. PMU through WAPDA will m	
	itate the demarcation of the land before		lake necessary inter agency
Loss Item 4: Loss of Residential Str			
Unit of Entitlement	Entitlements	Application Guidelines	Additional Services
Owner(s) of the structures identified by DRO through Land Acquisition Survey	 Replacement Value (RV) of residential structure. Transfer/relocation Grant @ PKR 100/-(One hundred) per square meter of affected structure. Reconstruction Grant @ PKR 250/-(Two hundred and fifty) per square meter of affected structure. Special Assistance of one-time payment of PKR 5000/- (Five thousand) for each female, disabled, elderly headed and very poor households. Owner will be allowed to take away all salvageable materials free of cost. The households moving and settling outside the project district will be eligible of getting a special allowance for relocation @ Rs. 50,000/- in addition to their actual compensation and other allowances. 	 the acquisition areas. 2. DRO with expertise from Communication and Works Department will determine the RV based on the Unit Rate agreed at the Jirga will compute the RV. When necessary, PRO will be employed to verify structures eligible for RV and other assistance. 3. Project/PMU will pay for structures 	Assistance in relocation and reconstruction.
Implementation Issues:			
record details such as floor area an 2. The Unit Rate for different types of	nd category of structure of to be demolish residential structures will be computed b	rrvey by Communication and Works Department ned. by the Executive Engineer, C&W and approved a epresentative, and PRO with expertise from C&V	at a Jirga comprising

take into consideration the rates adopted by the Diamer-Basha Dam Project.Compensation must be paid before PAPs dismantles and removes the structures as per civil works requirement.

4. The date of service of notice under section 4 and/or Inventory Census will be the cut-off date for all structures to be removed.

Loss Item 5: Loss of Commercial Structures					
Unit of Entitlement	Entitlements	Application Guidelines	Additional Services		
Owners of commercial structures identified by DRO through Land Acquisition Survey	 RV of commercial structures. Transfer Grant @ PKR 100/-(One hundred) per square meter of affected structure. Reconstruction Grant @ PKR 500/-(Five hundred) per square meter of affected structure. Owner will be allowed to take all salvageable materials back free of cost. 	 Applicable to all structures located within the land acquisition area at cut-off date. Jirga of affected villagers and DRO with expertise from C&W will determine the RV. When necessary, PRO will verify and record structures eligible for RV and other assistance. DRO will pay for structure. The Project will provide other resettlement benefits with assistance from SRU. 	Assistance in relocation and re-construction.		
Implementation Issues:					
details such as floor area and catego2. Replacement value (RV) of structure3. Compensation must be paid before4. The cut-off date for titled owners and	ory of structure of to be demolished. e will be determined and approved in the dismantling and removing the structures d socially recognized owners as stated ir	as per civil works requirement.			
Loss Item 6: Loss of Physical Cultur		Anniastian Ovidalinas			
Unit of Entitlement Department of Archaeology and Museum (DOAM) of KPK, the Legal Custodian of the archaeological resources of the project affected area.	 Entitlements Cost of dismantling, moving and reconstruction of the 400 year Mosque at Seer Gayal. Cost of land to relocate the Mosque Cost of protecting the submerged graves with stone pitching. 	 Application Guidelines 1. Applicable to the structures identified in the PCR Plan 2. Project consultants (Dasu Hydropower Consultants) has identified and recorded structures for conservation. 3. The Project will support local community in performing religious ceremonies before covering the graveyards. 	Additional Services The Project will support the DOAM in procurement and protection of rock carvings at Shatial.		
Implementation Issues					
 The project consultant team has identified and assessed the cost of PCR to be conserved/relocated. Cost of conservation and/or relocation will be paid to the Department of Archaeology and Museum (DOAM) of KPK before dam construction and the DOAM is responsible for implementation before inundation. Loss Item 7: Loss of Timber and Fruit Bearing Trees 					
Unit of Entitlement	Entitlements	Application Guidelines	Additional Services		
 Owner(s) identified by DRO through Land Acquisition Survey Socially recognized (by Malik/Mullah and VC) owners of 	 RV of Timber trees. Fruit-bearing trees: if the tree is at or near fruit-bearing stage, the estimated current market values of 	 Applicable to all trees and plants located in acquisition area at cut-off dates. DRO/Project will pay applicable compensation for trees/plants. 	SRU to explain RAP policies regarding compensation for the trees of different categories and		

trees grown on public or other land, as identified by Census and verified by Land Acquisition Survey.	, as identified by Census and 3. Fruit-bearing trees with timber: RV Forestry and Department of Agriculture ried by Land Acquisition for the timber and estimated will recommend RV of trees and fruits.					
Implementation Issues:						
calculating the RV.2. DRO will determine the market pri compensation value.	ice of trees with assistance from district E re-plantation and post-plantation care pro	of Forestry/Department of Agriculture will be cor Department of Forest/Department of Agriculture a ograms under Environmental Management Actio	and enhance it by 50% to fix			
Unit of Entitlement	Entitlements	Application Guidelines	Additional Services			
Cultivators identified by DRO through Land Acquisition Survey	 RV of standing crops. Owners will be allowed to harvest of standing crops prior to inundation. 	 Applicable for all crops standing on land within the acquisition area at the time of dispossession. DRO with assistance from PRO will pay for crops. DRO with assistance from Department of Agriculture will recommend RV of crops at harvest. 	SRU will assist EPs in the process of claiming compensation from DRO office for preparing necessary documents.			
Implementation Issues:						
identified through Land Acquisition Sur	vey conducted by DRO.	on data obtained from District Agriculture Exte	nsion Office, Dasu) for those			
Loss Item 9: Loss of Leased/Mortga						
Unit of Entitlement	Entitlements	Application Guidelines	Additional Services			
 Identified recognized lessee or sharecropper, with informal tenancy arrangements, including socially recognized verbal agreements. 	 RV of crops. Outstanding lease money back to the lessee by the owner as per agreement. Dislocation allowance @ PKR 1500/-per kanal for actual cultivator to cover the income loss from the land 	 With customary tenancy agreements, including socially-recognized verbal agreements, owner will receive compensation payment from DRO. The owner will pay the outstanding liabilities to the lessee/mortgagee under the conditions that: (i) all contractual liabilities are already paid up; (ii) if not, the legal owner will get the residual payment after all liabilities are paid up. 	 SRU will assist in ensuring that the lessee receives all eligible payments. SRU will facilitate the refund of outstanding lease money by the owner to the lessees. 			

	2. DRO will ensure the payment of RV of
	crops to the cultivator.
	3. Dislocation Allowance will be paid to the
	actual cultivator of the acquired land by
	DRO/Project with assistance from SRU.
Investory and attack to the average	· · · · · · · · · · · · · · · · · · ·

Implementation Issues:

1. Land Acquisition Survey conducted by DRO will identify each land owner and any persons who presently have interest in the acquired land from formal/informal agreement.

2. Any disputes over status of present interest in the land will be resolved through grievance redress procedure. Once resolved, SRU will assist in processing payments of all outstanding liabilities on the land to the appropriate persons.

3. RV of crops will be determined by DRO/Department of Agriculture (based on data obtained from District Agriculture Office, Dasu).

4. Dislocation Allowance to cover loss of income will be paid to the tenant as per project-specific policy provisions.

Loss Item 10: Loss of Income from Displaced Commercial Premises							
Unit of Entitlement	Entitlements	Application Guidelines	Additional Services				
Any proprietor or businessman or artisan operating in premises, at the time of issuance of Notice under section 4.		entitlements after award of compensation by DRO to the owner of premises.2. The Project will directly pay the					

Implementation Issues:

1. Primary eligibility to be based on businessmen identified by DHC Census and verified by Land Tenure Survey conducted by DRO.

2. All the business operators will be entitled for grant against loss of business and relocation to the new market area to be established under Management Plan for In migration and Construction Workers (Volume 10 of Social and Resettlement Management Plan

3. The income-generating program will be implemented by the SRU with assistance from an organization experienced in rehabilitation and livelihood generation activities of resettled persons in similar hydropower projects in the area.

Loss Item 11: Temporary loss of income (wage earners in agriculture, commerce & small business and industry)							
Unit of Entitlement	Unit of Entitlement Entitlements		Additional Services				
Regular wage earners employed in	1. Grant to cover temporary loss of	1. EP must have been an employee of	1. EPs will be brought				
agriculture, commerce & small	regular wage income @ PKR 200/-	landowner or business located in the	under income and				
business and industry in the affected	(Two hundred) X 90 days for farm	acquired lands for at least twelve months,	livelihood restoration				
area.	labor; PKR 200/-(Two hundred)X	as identified by the Census conducted by	programs to be				
	90 days for Gujjers employed to	the Consultants (DHC Census).	implemented under RAP,				
	look after livestock; PKR 250/-	2. Special needs of vulnerable groups will be	and training programs,				

Volume 2 – Environmental Impact Assessment

	 (Two hundred and fifty) X 90 days for employees in timber transportation; 2. A one-time grant of PKR 150,000/= (one hundred and fifty thousand) for Soniwal households engaged in gold extraction in the project affected area identified by the DHC Census 3. Female-headed households, disabled, elderly and extremely poor to be paid a one-time grant of PKR 50,000/- (fifty thousand) as Special Assistance. 4. Income and livelihood restoration assistance from SRU Social Development Fund, to be created by the Project. 5. Rs.300 (Three hundred) X 90 days for wage workers at hotels/shops and restaurants 	assessed further. 3. The resettlement benefits will be paid by Project with assistance from SRU.	 including the current technical and vocational training programs sponsored by the Project. Involvement of trained EPs in construction work. Involvement of trained EPs in tree plantation and social afforestation programs under EMAP.
Implementation Issues:			
Primary eligibility to be based on wag settled by the grievance redress comm	e earners identified by the DHC Census ittee and PRO.	s and further verified by PRO. Further claims a	ind grievances, if any, will be
Loss Item 12: Loss of Income from F	Rented-out and Access to rented-in re	sidential/ commercial premises	
Unit of Entitlement	Entitlements	Application Guidelines	Additional Services
 Owner of the rented-out premises as identified by Census and verified by PRO. Household/person rented-in any such structure as identified by Census and verified by PRO. 	Dislocation Allowance of PKR 10,000./-(Ten thousand) for Renters and PKR 5000/-(Five thousand) for renter	Each renter of affected premises will be entitled for the dislocation allowance. The owners of rented out premises will be entitled for dislocation allowance for each unit of premises rented out to separate families or persons. Dislocation Allowance will be paid by Project with assistance from PRO/SRU.	income and livelihood restoration program to be implemented under RAP.

Implementation Issues:			
	will establish the owner and renter of the		
Loss Item 13: Households losing m Unit of Entitlement	Entitlements	griculture or business) due to the project Application Guidelines	Additional Services
	 One time Dislocation Allowance @ PKR 10,000/- (Ten thousand) per household. 	1. The one time Dislocation Allowance	 EPs will be brought under income and livelihood restoration program. EPs will also be included in the current project sponsored vocational training program training EPs for employment in project construction activities. Involvement of trained EPs in Project construction work. Involvement of trained EPs in tree plantation and social forestations programs.
Implementation Issues:			
1. Loss of income will be assessed a households from all sources through		es (land and businesses) to the project and the	ne total income of the affected
2. PRO will verify the percentage of los	ss comparing the actual loss and the tota	al income from all sources of the affected house	holds.
duration.		e eligible for credit from the PRO Social Devel	opment Fund (SDF) for longer
Loss Item 14: Loss of Livelihood (No	· · · · · · · · · · · · · · · · · · ·		A Little and O and a se
Unit of Entitlement	Entitlements	Application Guidelines	Additional Services 1. PAPs will also be
Households/persons affected by loss of livelihood	 Free Vocational Training will be provided to the people of affected area. Free horticulture training will be provided to the people of affected area. Training in fish hatchery operations 	A pro-active program to this end has already been started by WAPDA: local youths are receiving a six-month vocational training program in various lines of work to prepare them for guaranteed jobs in the project construction work. Priority will be given to affected households for working in project construction activities.	included in the current project sponsored vocational training program training PAPs for employment in project construction activities.

	and sustainable fishery will be provided to the people of affected area.4. Jobs in the project will be provided to the people of affected area		
	5. Inclusion in area development programs implemented with SDF and project benefit sharing mechanism		
		income generation activities and training, mi and Livelihood, in the long term, with funding t	
Unit of Entitlement	Entitlements	Application Guidelines	Additional Services
Concerned Department	Replacement of affected structures	WAPDA and concerned department with the help of DCO will be responsible for the replacement of the affected public structures with the financial assistance of the project at appropriate site.	After the construction of the affected public structure, the said structure will be handed over to the concerned department who will be responsible for the further maintenance and operation.
Loss Item 16: Unforeseen Adverse	Impacto		
Unit of Entitlement	Entitlements	Application Guidelines	Additional Services
Households/persons affected by any unforeseen impact identified during RAP implementation	Entitlements will be determined as per the resettlement policy framework	The unforeseen impacts will be identified through special survey by the PRO/SRU. The entitlements will be approved by PMU/WAPDA and concurred by the World Bank	APs affected by unforeseen impacts as additional relocation due to blasting and dust, construction associated activities will be accommodated by this compensation by SRU with facilitation by PRO
Implementation Issues:	•		
The unforeseen impacts and affected p including details as quantity of losses,		s per policy framework and proposed to WAPD	A and World Bank for approval

Annex – 8.2

LAND ACQUISITION AND RESETTLEMENT BUDGET

1.1 L COMPE 1.1.1 G 1.1.2 B B 1.1.3 A 1.1.3 A 1.1.4 R 1.1.5 C 2 E 2 2	Residential	Kanal* Kanal Kanal Kanal Kanal bensatior	262,000 100,000 190,000 760,000 325,000 325,000 1)	6,253 47,582 21,652 3,138 603.8 112.2	1,638.30 4,758.16 4,113.96 2,385.11 196.25 36.47	17.25 50.09 43.30 25.11 2.07
COMPE 1.1.1 G 1.1.2 B 1.1.3 A 1.1.3 A 1.1.4 R 1.1.5 C E 2	ENSATION Grazing/ Rakh Barren (GhairMumkin Stone) Barren (GhairMumkin) Agriculture Residential Commercial Sub-total (Basic Comp Escalation of 2 Years at 6.5% for 2013 Rates Fax (@2%)	Kanal Kanal Kanal Kanal Kanal	100,000 190,000 760,000 325,000 325,000	47,582 21,652 3,138 603.8	4,758.16 4,113.96 2,385.11 196.25	50.09 43.30 25.11 2.07
1.1.1 G 1.1.2 B 1.1.3 A 1.1.4 R 1.1.5 C E 2	Grazing/ Rakh Barren (GhairMumkin Stone) Barren (GhairMumkin) Agriculture Residential Commercial Sub-total (Basic Comp Escalation of 2 Years at 6.5% for 2013 Rates Fax (@2%)	Kanal Kanal Kanal Kanal Kanal	100,000 190,000 760,000 325,000 325,000	47,582 21,652 3,138 603.8	4,758.16 4,113.96 2,385.11 196.25	50.09 43.30 25.11 2.07
1.1.2 B 1.1.3 A 1.1.4 R 1.1.5 C E 2	Barren (GhairMumkin Stone) Barren (GhairMumkin) Agriculture Residential Commercial Sub-total (Basic Comp Escalation of 2 Years at 6.5% for 2013 Rates Fax (@2%)	Kanal Kanal Kanal Kanal Kanal	100,000 190,000 760,000 325,000 325,000	47,582 21,652 3,138 603.8	4,758.16 4,113.96 2,385.11 196.25	50.09 43.30 25.11 2.07
1.1.2 B 1.1.3 A 1.1.4 R 1.1.5 C E 2	Barren (GhairMumkin Stone) Barren (GhairMumkin) Agriculture Residential Commercial Sub-total (Basic Comp Escalation of 2 Years at 6.5% for 2013 Rates Fax (@2%)	Kanal Kanal Kanal Kanal	100,000 190,000 760,000 325,000 325,000	47,582 21,652 3,138 603.8	4,758.16 4,113.96 2,385.11 196.25	50.09 43.30 25.11 2.07
1.1.2 B 1.1.3 A 1.1.4 R 1.1.5 C E 2	Barren (GhairMumkin) Agriculture Residential Commercial Sub-total (Basic Comp Escalation of 2 Years at 6.5% for 2013 Rates Fax (@2%)	Kanal Kanal Kanal	190,000 760,000 325,000 325,000	21,652 3,138 603.8	4,113.96 2,385.11 196.25	43.30 25.11 2.07
1.1.3 A 1.1.4 R 1.1.5 C E 2	Agriculture Residential Commercial Sub-total (Basic Comp Escalation of 2 Years at 6.5% for 2013 Rates Fax (@2%)	Kanal Kanal	760,000 325,000 325,000	3,138 603.8	2,385.11 196.25	2.07
1.1.4 R 1.1.5 C E 2	Residential Commercial Sub-total (Basic Comp Escalation of 2 Years at 6.5% for 2013 Rates Fax (@2%)	Kanal Kanal	325,000 325,000	603.8	196.25	
E 2	Sub-total (Basic Comp Escalation of 2 Years at 6.5% for 2013 Rates Fax (@2%)		325,000	112.2	36.47	
2	Escalation of 2 Years at 6.5% for 2013 Rates Fax (@2%)	pensatior	n)			0.38
2	2013 Rates Гах (@2%)				13,128.23	138.19
Т					1,762.14	18.55
	Service Charges (@15%)				262.56	2.76
S	J				1,969.24	20.73
	Sub-total (1.1)			17,122.17	180.23
1.2 S	STRUCTURES					
1.2.1 K	Katcha	Sq. ft.	1,500	740,526	1,110.79	11.69
1.2.2 P	Pacca	Sq. ft.	2,500	87,659	219.15	2.31
1.2.3 S	Semi Pacca	Sq. ft.	2,000	481,413	962.83	10.14
1.2.4 W	Vood	Sq. ft.	1,500	11,326	16.99	0.18
	Sub-total (1.2	:)			2,309.75	24.31
1.3 T	TREES					
		No.	20,000	18,317	366.34	3.86
1.3.2 F	Fruit Tree	No.	57,000	2,982	169.97	1.79
	Sub-total (1.3)			536.31	5.65
1.4 C	CROPS	-				
1.4.1 N	Maize	Per 40 kg	1,500	22,724	34.09	0.36
1.4.2 W	Wheat	Per 40 kg	1,600	18,592	29.75	0.31
	Sub-total (1.4		63.83	0.67		
151 D	Relocation Cost (Based on Entitler Dislocation Allowance against loss	nent Mat Kanal	20,000	2,827	56.54	0.60
$\frac{152}{152}$ R	of agri. Land Reconstruction Grant for Residential Structure		250	127,906	31.98	0.34
o	Sub-total (1.5	3			88.52	0.93
1.6 R	Rehabilitation Assistance	7			00.32	0.35
	Special Assistance For Vulnerable H	ls				
	•	No.	200,000	13	2.60	0.03
	Dthers	No.	150,000	42	6.30	0.03
A 1.6.2 o'	Assistance against income loss by owners operated commercial setups		30,000	76	2.28	0.02
163 A	or three months. Assistance for Affected wage earners	APs for 3 months	27,000	137	3.70	0.04
	Transfer Grant for relocation of business structures	m ²	100	7113.8	0.71	0.01
P	Sub-total (1.6	5)			15.59	0.16
	Sum of Sub-totals				20,136.18	211.96
2 - RES	SETTLEMENT SITES DEVELOPME				-,	
	and					

Sr. No.	COST ITEMS	Unit	Unit Rate (PKR)	Quantity	Total Cost (MPKR)	Total Cost (MUS\$)		
2.1.1	Land Leveling	Kanal	350,000	2070	724.50	7.63		
	Sub-total (2.1	2			724.50	7.63		
2.2								
2.2.1	Access Roads construction and land compensation	Km	10,000,000	51	510.00	5.37		
		No.	7,360,000		29.44	0.31		
2.2.3	Water supply Tank(30 Village)	Cu. ft.	2,850	57,120	162.79	1.71		
	Water Supply Channel(30 Village)	per km	695,000		69.50	0.73		
2.2.5		No.	12,720,000		25.44	0.27		
		No. per G.	6,360,000		25.44	0.27		
2.2.6	Boundary wall for Graveyard	Yard	1,170,000	30	35.10	0.37		
2.2.7	Dispensary(3 Structures)	per structure	920,000	3	2.76	0.03		
	Sub-total (2.2				860.47	9.06		
	Sum of Sub-total	s of 2			1,210.47	12.74		
3 - LI\	VELIHOOD SUPPORT			-				
3.1	Skill Development for Affected Communities	per year	100,000,000	15	1,500.00	15.79		
	Sub-total of 3	3			1,500.00	15.79		
4 - LC	OCAL AREA DEVELOPMENT							
4.1	Infrastructure				1,235.00	13.00		
4.2	Entrepreneur Support 10 Years				475.00	5.00		
4.3	Capacity Building of Local Government				237.50	2.50		
4.4	rears (Services and facilities)	Years	47,500,000	10	475.00	5.00		
4.5	Education Fund 10 Years (Literacy Promotion, Scholarship, etc.)				427.50	4.50		
Sub-total of 4				2,850.00	30.00			
-	STITUTION & MANAGEMENT							
5.1	Building	Sq. ft.	2,000	8,160	16.32	0.17		
5.2	Fixtures and Furnishing	Lump sur	n		20.00	0.21		
5.3	(a) PMU Staff Salaries		36,100,000	10	361.00	3.80		
0.0	(b) PMU Costs during O&M	Years	45,600,000	5	228.00	2.40		
5.4	Vehicles	No	4,200,000	10	42.00	0.44		
5.5	R&M of vehicles	Years	10,000,000	15	150.00	1.58		
5.6	Office Equipment	Lump Su		45	10.00	0.11		
5.7	Operation & Maintenance Cost Sub-total of	Years	250,000	15	3.75 831.07	0.04 8.75		
	ANNING AND DESIGNING	5			031.07	0.75		
6.1	Resettlement Implementation				28.50	0.30		
6.2	Resettlement Site Development				28.50	0.30		
6.3	Livelihood Support Design and	Sum Year	28,500,000	15	427.50	4.50		
<u> </u>	Implementation Sub-total of				484.50	5.10		
7 - ΔΓ	DMINISTRATIVE OVERHEADS	0			404.30	5.10		
7.1	Administrative Overheady Land	Lump Su	m		10.00	0.11		
	Sub-total of	r 7			10.00	0.11		
8 - MC	ONITORING & EVALUATION							
8.1	Independent Manitar (2 times a	Year	30,000,000	8	240.00	2.53		
8.2		month	250,000	84	21.00	0.22		
8.3	-	Per visit	3,000,000	14	42.00	0.44		

Sr. No.	COST ITEMS	Unit	Unit Rate (PKR)	Quantity	Total Cost (MPKR)	Total Cost (MUS\$)		
8.4	MIS Development	Lump Su	ım	One time cost	2.65	0.03		
8.5	MIS Staff	Lump su	m		24.78	0.26		
	Sub-total of	330.43	3.48					
9 - TR	AINING & CAPACITY BUILDING							
41	Consulting Service Cost (Sub Projects) / Outsourcing, (If any)	Lump su	m		25.00	0.26		
9.2	Research	Year	15,000,000	10	150.00	1.58		
9.2.1	National	Year	2,500,000	7	17.50	0.18		
9.2.2	International	Year	7,000,000	7	49.00	0.52		
9.3	Trainings	Year 30,000,000 10		300.00	3.16			
	Sub-total of		541.50	5.70				
	Total (1+2+3+4+5+6	+7+8+9)			28,268.65	297.56		
10 - C	10 - CONTINGENCY							
10.1	Physical Contingency (@25%)				7,067.16	74.39		
10.2	Price Contingency (@9 %)				2,544.18	26.78		
	Sub-total of 1	9,611.53	101.17					
	GRAND TOTAL (Total of 1+2+3	+4+5+6+	7+8+9+10)		37,880.74	398.74		

* 1 Kanal = 506m² or 0.125 Acre or 0.05ha, 1\$=95 PKR as per 2012 rates

Annex – 9.1

TERMS OF REFERENCE FOR THE DHP ENVIRONMENTAL UNIT STAFF

Note: All the following positions are based in Dasu in Kohistan District of KP.

TOR FOR DIRECTOR ENVIRONMENT

Designation:

Director Environment

Qualification:

At least Master degree in Environmental Engineering/Environmental sciences from the university recognized by PEC/HEC. Ph.D. is preferred. **Experience:**

• 15 years' experience in the field of environment in public/private sector including two years' experience in project coordination.

- Experience in working with water related mega projects specifically in implementation of EMP in hydropower projects. Experience in working with World Bank or other donor funded projects is preferable.
- Fluent in English Language
- Knowledge of computer operating system

Job Description:

Director of Environment heads the Environmental Unit of Dasu Hydropower Project. The unit consists of 3 sub-units: Environment, Ecology and Occupational Health and Safety. Each of the sub-units will be headed by Assistant Director. The position is based in WAPDA's Project Office at Dasu. The responsibilities of Director includes, but not limited to

- To ensure that environmental requirements of the project are implemented in the whole cycle of project implementation.
- To implement the environment management plan as per design of consultants.
- To ensure the implementation of mitigation measures as per design of consultants.
- To communicate specific problems/constraints faced by environment expert of contractor to implement good practices.
- To co-ordinate with provincial and district governments to obtain necessary clearances, such as tree cutting, land clearance, quarry operation etc.
- To co-ordinate with DOR in implementing environmental conditions attached to the environmental clearance.
- Traffic management and co-ordination meetings.
- To co-ordinate with World Bank missions, WEC and DG-EPA KP
- To identify any impact not forecasted in EIA report and find an acceptable mitigation.
- Monitoring environments (water, air, noise, vibration, health issues) and issue reports.
- Issue corrective action plan.
- To liaison with consultants.
- To prepare the monthly and quarterly progress report.
- Responsible for planning, execution/carrying out other related assignments.

TOR FOR DEPUTY DIRECTOR ENVIRONMENT

Designation:

Deputy Director Environment

Qualification:

Master degree in Environmental Engineering/Environmental sciences from the university recognized by PEC/HEC.

Experience:

- 8 years' experience in the field of environment in public/private sector including two years' experience in project coordination.
- Experience in working with water related mega projects specifically in implementation of EMP in hydropower projects. Experience in working with World Bank or other donor funded projects is preferable.
- Fluent in English Language
- Knowledge of computer operating system

Job Description:

The responsibilities of Deputy Director includes, but not limited to:

- To assist Director Environment in implementing the environment management plan as per design of consultants.
- To assist director environment in the implementation of mitigation measures as per design of consultants.
- To assist director environment in co-coordinating with provincial and district governments to obtain necessary clearances, such as tree cutting, land clearance, quarry operation etc
- To assist DOR in implementing environmental conditions attached to the environmental clearance.
- Traffic management and co-ordination meetings.
- To co-ordinate with World Bank missions.
- To co-ordinate with WEC.
- To co-ordinate with DG-EPA KP.
- To identify any impact not forecasted in EIA report and find an acceptable mitigation.
- Monitoring environments (water, air, noise, vibration, health issues) and issue reports.
- Issue corrective action plan.
- To liaison with consultants.
- To assist in preparation of monthly progress report.
- To assist in preparation of bi annual progress report.
- Responsible for planning, execution/carrying out other related assignments.

TOR FOR ASSISTANT DIRECTOR ENVIRONMENT

Designation:

Assistant Director Environment

Qualification:

B.Sc/Master degree in Environmental Engineering/Environmental sciences from the university recognized by PEC/HEC.

Experience:

- 5 years' experience in the field of environment in public/private sector including two years' experience in project coordination.
- Experience in working with water related mega projects specifically in implementation of EMP in hydropower projects. Experience in working with World Bank or other donor funded projects is preferable.
- Fluent in English Language
- Knowledge of computer operating system

Job Description:

The responsibilities of Assistant Director includes, but not limited to

- To assist deputy director environment in implementing the environment management plan as per design of consultants.
- To assist deputy director environment in the implementation of mitigation measures as per design of consultants.
- To collect data regarding the environment from the field.
- To manage the record of the data collected from the field.
- Traffic management and co-ordination meetings.
- To co-ordinate with WEC.
- To identify any impact not forecasted in EIA report and find an acceptable mitigation.
- Monitoring environments (water, air, noise, vibration, health issues) and issue reports.
- To assist deputy director in Issuing corrective action plan.
- To liaison with consultants.
- To assist in preparation of monthly progress report.
- To assist in preparation of bi annual progress report.
- Responsible for planning, execution/carrying out other related assignments.

TOR FOR ASSISTANT DIRECTOR ECOLOGY

Designation:

Assistant Director Ecology

Qualification:

Master degree in Botany/Zoology from recognized university along with computer skills.

Experience:

- 5 years' experience in the field of botany/zoology in public/private sector including two years' experience in project coordination.
- Experience in working with water related mega projects specifically in implementation of EMP in hydropower projects. Experience in working with World Bank or other donor funded projects is preferable.
- Fluent in English Language
- Knowledge of computer operating system

Job Description:

The responsibilities of Assistant Director Ecology includes, but not limited to

- To conduct field surveys to collect information about the numbers and distribution of flora and fauna.
- To carry out survey to collect baseline ecological data
- To analyze and interpret the collected data,
- To liaison with and advising site managers, engineers, planners and others associated with a survey;
- To build relationships with stakeholders, including members of the public;
- Traffic management and co-ordination meetings.
- To co-ordinate with World Bank missions.
- To co-ordinate with WEC.
- To co-ordinate with DG-EPA KP.
- To identify any impact not forecasted in EIA report and find an acceptable mitigation.
- To monitor birds, wild life and aquatic life and issue reports.
- To liaison with consultants.
- To prepare monthly progress reports.
- To prepare bi annual progress reports.
- Responsible for planning, execution/carrying out other related assignments.

TOR FOR FISH EXPERT

Designation:

Fish Expert

Qualification:

M. Phil / Master Degree in Animal Sciences with specialization in fish/fishery biology from recognized university.

Experience:

- 5 years' experience in the field of aquatic biology/fishery research, management and teaching.
- Experience in working with water related mega projects specifically in implementation of EMP in hydropower projects. Experience in working with World Bank or other donor funded projects is preferable.
- Fluent in English Language
- Knowledge of computer operating system
- Experience in preparation of project reports will be an asset.

Job Description:

The responsibilities of fish expert includes, but not limited to

- To conduct field surveys to collect information about the numbers and distribution of fishes.
- To carry out fishery baseline survey.
- To analyze and interpret the collected data,
- To liaison with the fishery department KP.
- To build relationships with stakeholders, including members of the public;
- Responsible for planning, execution/carrying out other related assignments.
- Plan for reservoir fishery and implement fishery landing facilities and marketing.
- Fish hatchery implementation.
- To propose and execute research on biological species of indigenous species in the project area.
- To co-ordinate with World Bank missions.
- To co-ordinate with WEC.
- To liaison with consultants
- To prepare monthly progress reports.
- To prepare bi annual progress reports.
- Responsible for planning, execution/carrying out other related assignments

TOR FOR ASSISTANT DIRECTOR OHS

Designation:

Assistant Director OHS

Qualification:

B.Sc/Master degree in Environmental Engineering/Environmental sciences with specialization in occupational health and safety from the university recognized by PEC/HEC.

Experience:

- 5 years' experience in the field of environment in public/private sector including two years' experience in project coordination.
- Experience in working with water related mega projects specifically in implementation of EMP in hydropower projects. Experience in working with World Bank or other donor funded projects is preferable.
- Fluent in English Language
- Knowledge of computer operating system
- Experience in preparation of project reports will be an asset.

Job Description:

The responsibilities of Assistant Director OHS includes, but not limited to

- To conduct field surveys to collect information about the health and safety situation in the project area.
- To carry out health and nutritional survey to identify the health conditions of directly and indirectly affected villages of project area.
- To analyze and interpret the collected data,
- To liaison with the concerned department KP.
- To build relationships with stakeholders, including members of the public;
- To monitor clean environment of the offices and living areas.
- To implement the Environment management plan as described in the design report.
- To co-ordinate with World Bank missions.
- To co-ordinate with WEC.
- To liaison with consultants.
- To prepare monthly progress reports.
- To prepare bi annual progress reports.
- Responsible for planning, execution/carrying out other related assignments.

TOR FOR HEALTH AND SAFETY SPECIALIST

Designation:

Health and Safety Specialist

Qualification:

B.Sc./Master degree in Environmental Engineering/Environmental sciences with specialization in occupational health and safety from the university recognized by PEC/HEC.

Experience:

- 5 years' experience in the field of environment in public/private sector including two years' experience in project coordination.
- Experience in working with water related mega projects specifically in implementation of EMP in hydropower projects. Experience in working with World Bank or other donor funded projects is preferable.
- Fluent in English Language
- Knowledge of computer operating system
- Experience in preparation of project reports will be an asset.

Job Description:

The responsibilities of health and safety specialist includes, but not limited to

- To conduct field surveys to collect information about the health and safety situation in the project area.
- To carry out health and nutritional survey to identify the health conditions of directly and indirectly affected villages of project area.
- To analyze and interpret the collected data,
- To liaison with the concerned department KP.
- To build relationships with stakeholders, including members of the public;
- To monitor clean environment of the offices and living areas.
- To implement the Environment management plan as described in the design report.
- To conduct awareness programs with the help of health department to educate people about their health.
- To co-ordinate with World Bank missions.
- To co-ordinate with WEC.
- To liaison with consultants.
- To prepare monthly progress reports.
- To prepare bi annual progress reports.
- Responsible for planning, execution/carrying out other related assignments.

TOR FOR SITE ENGINEER

Designation:

Site Engineer

Qualification:

B.Sc./Master degree in Environmental Engineering/Environmental sciences with specialization in the field of environment from the university recognized by PEC/HEC.

Experience:

- 3 years' experience in the field of environment in public/private sector including two years' experience in project coordination.
- Experience in working with water related mega projects specifically in implementation of EMP in hydropower projects. Experience in working with World Bank or other donor funded projects is preferable.
- Fluent in English Language
- Knowledge of computer operating system
- Experience in preparation of project reports will be an asset.

Job Description:

The responsibilities of site engineer includes, but not limited to

- To monitor the implementation of the environment management plan as per design of consultants.
- To implement mitigation measures as per design of consultants.
- To collect data regarding the environment from the field.
- To manage the record of the data collected from the field.
- Traffic management and co-ordination meetings.
- To co-ordinate with World Bank missions.
- To co-ordinate with WEC.
- To identify any impact not forecasted in EIA report and find an acceptable mitigation.
- Monitoring environments (water, air, noise, vibration, health issues) and issue reports.
- To conduct spot monitoring for air, water and noise quality.
- To liaison with consultants.
- To assist in preparation of monthly progress report.
- To assist in preparation of bi annual progress report.
- Responsible for planning, execution/carrying out other related assignments.

TOR FOR PLANTATION EXPERT

Designation:

Plantation Expert

Qualification:

B.Sc./Master degree in Horticulture/Agriculture sciences with specialization in the field of horticulture from the recognized university.

Experience:

- 3 years' experience in the field of horticulture in public/private sector including two years' experience in project coordination.
- Experience in working with water related mega projects specifically in implementation of EMP in hydropower projects. Experience in working with World Bank or other donor funded projects is preferable.
- Fluent in English Language
- Knowledge of computer operating system
- Experience in preparation of project reports will be an asset.

Job Description:

The responsibilities of plantation expert includes, but not limited to

- To monitor the implementation of the environment management plan as per design of consultants.
- To establish the sapling sites.
- To monitor the sapling sites.
- To implement the plantation plan.
- To monitor the plantation plan.
- To collect data regarding the Plants from the field.
- To manage the record of the data collected from the field.
- To co-ordinate with WEC.
- To build the capacity of implementing partners and other stakeholders on horticulture practices.
- To compile and collect information on local input suppliers.
- and techniques
- To liaison with consultants.
- To assist in preparation of monthly progress report.
- To assist in preparation of bi annual progress report.
- Responsible for planning, execution/carrying out other related assignments.

TOR FOR ARCHAEOLOGIST

Designation:

Archaeologist

Qualification:

At least master degree in Archaeology/Museology from recognized university along with computer skills.

Experience:

5 years' experience in the field of archaeology and museums. At least one research papers should be published about archaeology and museology in national/international journal or national/international seminars/symposiums.

Job Description:

General

- To conserve/preserve the cultural heritage and develop it to have healthy share in economic growth of Khyber Pakhtoonkhwah (KP) and Pakistan.
- To develop and promote tourism in Pakistan and attract tourists to historical and cultural heritage, provide entertainment and recreational facilities to people.
- The ultimate aim is to contribute to regional and national economic growth.

Project Specific

- To establish a museum at Shatial.
- To preserve rock carvings at Shatial.
- To look after the operation and maintenance of museum and tourist facilities.
- To preserve Seo Mosque at Seo.
- To look after the preserved mosque.
- To dismantle Seer Gayal Mosque, its transportation and supervision to new site.
- To re-establish Seer Gayal mosque at a new place.
- To maintain preservation of any new chance find in the area.
- To maintain the record of various visitor groups and individuals.
- To maintain the remarks of high level visitors (national and foreigners)
- To co-ordinate with Archaeology department KP.
- Responsible for planning, execution/carrying out other related assignments.

Annex – 9.2 EMP COST ESTIMATES

A. Contractors Bills of Quantities

Table A1- Environmental Staff of Contractors

S.No.	Description	Year	Unit	Quantity	Rate. USD	Amount, USD
2	Development and implementation of management plans (CEAP) in accordance with Project's EMP and WorldBank Group EHS guidelines Environmental staff of contractors (Environmental	2014- 2025		Lumpsum	1% of civil works (1780 million USD) and 0.5% of mechanical or electro- mechanical works (1297 million USD)	24,285,000
	Specialist, OHS specialist, and other necessary staff to carryout the above activites)					
	Total					24,285,000

Table A2- Water Quality Laboratory

Sr. No.	Description	Year	Unit	Quantity	Rate. USD	Amount, USD
1	Water Quality Lab for testing of Key NEQS parameters for Water and Waste Water Quality	2015-2022	Lump sum	1	200,000	200,000
2	Chemicals and maintenance	2015-2022	Years	10	10,000	100,000
3	Technician	2015-2022	Months	120	2,000	240,000
	Total					540,000

Table A3 - Portable Air, Noise, Vibration and Water Quality Meters

Sr. No.	Description	Year	Unit	Quantity	Rate. USD	Amount, USD
I	Air Quality Meters	2015-2022				
1	PM		Numbers	10	2,500	25,000
2	SO2		Numbers	10	2,500	25,000
3	Nox		Numbers	10	2,500	25,000
4	CO		Numbers	10	2,500	25,000
5	CO2		Numbers	10	2,500	25,000
II	Noise Quality Meters					
1	Noise Meter		Numbers	10	1,000	10,000
2	Vibration Meter (air)		Numbers	10	2,500	25,000
3	Vibration Meter (Ground)		Numbers	10	1,000	10,000
111	Water Quality Meters					
1	Turbidity		Numbers	10	1,000	10,000
2	Conductivity		Numbers	10	500	5,000
3	рН		Numbers	10	500	5,000

Sr. No.	Description	Year	Unit	Quantity	Rate. USD	Amount, USD
4	Temperature		Numbers	10	100	1,000
5	DO		Numbers	10	1,000	10,000
IV	Technicians	2015-2022	Months	120	2,000	240,000
	Total					441,000

B. PMU Budget on Environmental Staff and Consultants

	B1- Environmental Staff of			agement on		1
Sr. No.	Description	Year	Unit	Quantity	Rate. USD	Amount, USD
1	Deputy Project Director	2014-2025	Month	120	600	72,000
2	Director	2014-2025	Month	120	2,400	288,000
3	Deputy Director	2014-2025	Month	120	2,000	240,000
4	Asst. Director - Environment	2014-2025	Month	120	1,700	204,000
5	Site Engineer 2	2014-2025	Month	240	1,500	720,000
6	Asst. Director Ecology	2014-2025	Month	120	1,700	204,000
7	Fish expert	2014-2025	Month	120	1,500	180,000
8	Plantation expert	2014-2019	Month	72	1,500	108,000
9	Assistant director OHS	2014-2025	Month	120	1,700	204,000
10	Health and safety specialist	2014-2025	Month	120	1,500	180,000
11	Equipment/ office facilities	2014-2015				250,000
12	Vehicles	2014-2015				250,000
	Total					2,900,000

Table B1- Environmental Staff of EU-DHP (Project Management Unit of WAPDA at Dasu)

Note: The remuneration rates are double the regular WAPDA wages

Table B2- Environmental Staff of EU-CSC (Construction Supervision Consultant)

Sr. No.	Description	Year	Unit	Quantity	Rate. USD	Amount, USD
1	International Environmental Specialist - Lead (intermittent for 3 years)	2015-2022	Month	36	30,000	1.080.000
2	International Environmental Specialist - OHS(intermittent)	2015-2022	Month	26	30,000	780,000
3	International Ecologist - Intermittent	2015-2022	Month	16	30,000	480,000
4	Environment Specialist (Nat) (2 persons for 7 years)	2015-2022	Month	204	4,000	816000
5	Ecologist (nat) (one person for 6 years)	2015-2022	Month	84	4,000	624,000
6	Occupational Health and Safety Specialist (Nat) (1 person for 7 years	2015-2022	Month	120	4,000	480,000
7	Surveyors (Nat) (2 persons for 5 years each)	2015-2022	Month	156	500	78,000

Sr. No.	Description	Year	Unit	Quantity	Rate. USD	Amount, USD
	Total					4,338,000

Table B3- Panel of Experts

Sr. No.	Description	Year	Unit	Quantity	Rate. USD	Amount, USD
1	POE - Environmental Specialist (2 weeks for every 6 months)	2014-2025	Month	10	25,000	250,000
2	POE - Social and Resettlement Specialist (2 weeks for every 6 months)	2014-2016	Month	3	25,000	75,000
3	Travel Expenses					100,000
	Total					425,000

Table B4- External Auditing (Third Party) Consultants

Sr. No.	Description	Year	Unit	Quantity	Rate. USD	Amount, USD
1	Air Quality Monitoring	2014-2025	20	10	15,000	150,000
			Sites/yr			
2	Water Quality Monitoring	2014-2025	20	10	15,000	150,000
			Sites/yr			
3	Noise and Vibration	2014-2025	20	10	5,000	50,000
	Monitoring		Sites/yr			
4	Auditing of Work	2014-2025	Months	10	15,000	150,000
	Practices and EMP					
	Compliance Issues					
	Total					500,000

Table B5 - Internal Auditing (by WEC)

Sr. No.	Description	Year	Unit	Quantity	Rate. USD	Amount, USD
1	Travel and Field Expenses	2014-2025	Quarterly	40	5,000	200,000
	Total					200,000

C. Aquatic Ecology

Table C1: Fish Studies and Monitoring

Description	Year	Unit	Quantity	Rate. USD	Amount, USD
I. Fish Biological Study					
Team Leader	2014-2015	Months	12	5000	60000
Sr Survey Officer	2014-2015	Months	12	3000	36000
Data Collector	2014-2015	Months	12	2000	24000
Technical Assistant 1	2014-2015	Months	12	1500	18000
Technical Assistant 2	2014-2015	Months	12	1500	18000
Field work (25 months)	2014-2015	days per month	10	100	12,000
Water Quality Testing (25 months)		Samples / month	50	100	60,000
Consultations and meetings					5,000
Sub Total					233,000
II- Seasonal Fish Habitat use					
Team Leader	2015-2019	month	20	5000	100,000
Sr Survey Officer	2015-2019	month	20	3000	60,000
Technical Assistant 1	2015-2019	month	20	1500	30,000
Technical Assistant 2	2015-2019	month	20	1500	30,000
Field work	2015-2019	days per month	10	200	40,000
Laboratory	2015-2019	Samples / month	50	75	75,000
Sub Total					335,000
III. Downstream Reservoir Fish Monitoring					
Team Leader	2020-2025	Month	25	5000	125000
Fish Expert 1	2020-2025	Month	25	4000	100000
Fish Expert 2	2020-2025	Month	25	3000	75000
Field work	2020-2025	days per month	10	150	37,500
Laboratory	2020-2025	Samples / month	50	50	62500
Sub Total					400,000
Grand Total					968,000

Table C2: Design and implementation of fish capture and stocking

Description	Year	Unit	Quantity	Rate. USD	Amount, USD
Capture and handling equipment	2015-2019				130,000
Fish containers					20,000
Oxygen cylinders					20,000
Vehicles					30,000
Operation cost of fish	2020-2030	Year	10	50,000	500,000
Total					700,000

Description	Year	Unit	Quantity	Rate. USD	Amount, USD
Installation of fish deterrent or exclusion screens.	2015-2019			400,000	400,000
Total					400,000

Table C3: Installation of fish deterrent devices or exclusion screens.

Table C4: Fish Hatchery and R&D facility

Description	Description Year		Quantity	Rate. USD	Amount, USD
Land cost	2018-2025	acres	10	60000	600,000
Civil works	2018-2025	Lump sum			300,000
laboratory	2018-2025	Lump sum			200,000
Operation costs	2018-2025	Year	5	147240	736,200
Fish landing facilities	2018-2025				198,600
Total					2,034,800

Supporting Table for Table C4: Operating cost of hatchery

Description	Year	Unit	Quantity	Rate. USD	Amount, USD
Asst. Director		year	5	1,700	102,000
Fisheries Asst. 2		year	5	1,400	168,000
Supervisor 1		year	5	270	16,200
Fishermen 4		year	5	250	60,000
Guard 6		year	5	250	90,000
Watchers 3		year	5	200	36,000
Sweeper 1		year	5	150	9,000
Electricity bill		year	5	1,500	90,000
Driver		year	5	200	12,000
Vehicle maintenance		year	5	500	30,000
lab operations		year	5	250	15,000
Fish feed		year	5	500	30,000
breeder fish		year	5	50	3,000
Miscellaneous		year	5	1,000	60,000
maintenance		year	5	250	15,000
Total					736,200

Supporting Table for Table C4: Construction of fish landing facilities

Description	Year	Unit	Quantity	Rate. USD	Amount, USD
Office		No	1		50,000
Store		No	1		50,000
Guards 2		No	2	150	3,600
Guard room		No	1		20,000
Gettie for boat anchoring		No	1		50,000
Maintenance					25,000
Total					198,600

Description	Year	Unit	Quantity	Rate. USD	Amount, USD
construction of pools/riffles in tributaries	2020- 2025	No	6	15,000	90,000
staff for collection of brooders and leaving them in pools	2020- 2025	No	6	150	10,800
Total					100,800

Table C5: Enhancement measures for Fish Habitat Near the Tributaries

Table C6 : Capacity building of KP Fisheries Department

Description	Year	Unit	Quantity	Rate. USD	Amount, USD
Capacity building for assisting with field studies and biodiversity management	2020- 2025			50,000	50,000
Capacity building for reservoir fisheries management	2020- 2025			50,000	50,000
Total					100,000

D. Terrestrial Ecology

Table D1-Tree plantation and forest management plan

Description	Year	Unit	Quantity	Rate. USD	Amount, USD
Sapling	2014-2016	No	300,000	0.4	120,000
Tree plantation and maintenance for 3 years	2016-2020	No	100,000	15	1,500,000
Total					1,620,000

E. Physical Cultural Resources

Table E1: Physical Cultural Resources

	ltem	Unit	Quantity	Rate. PKR	Amount, PKR	USD
I	Procurement and Prot	tection of	Shatial Roc	k Carvings		
1	Land Acquisition	Ha (Acres)	10(25)	According to agreement between Director Revenue office and DOAM KP	125,800,000	1,258,000
2	Fencing	meters	1250	100 (including charges)	125,000	1,250
3		Poles	417 (with poles for every 3m)	500	208,500	2,085

	ltem	Unit	Quantity	Rate. PKR	Amount, PKR	USD
4	Gate	Number	1	Lump sum	50,000	500
5	Facilities for office and tourists (office, information centre, visitors' toilet, visitors pavilion, etc.)	Square meters	5,000	5,000	25,000,000	250,000
6	Cleaning of Carvings with chemicals and providing fibreglass facilities	Number	46	30,000	1,380,000	13,800
7	Training of 3 local persons for 6 months as guides at Tourism Dept., Shadman Lahore	Number	3	100,000 (including tuition fees, accommo- dation and stipend)	300,000	3,000
8	Salaries for 2 security staff for 3 years by WAPDA (later will be by KP DOAM)	Year	3	360,000 (15,000 per month / staff)	1,080,000	10,800
	Sub Total I				153,943,500	1,539,435
II	Seo Mosque					
1	Anti-termite chemicals for protection of timber (2640 square meters of timber and 1217 square meters of ground)	Litres	62	4,000	248,000	2,480
	Rental charges (12 days) for Tools for injection (injector machine and spray machine), their transport from Lahore and labour charges	Days	12	20,0000 (incl. daily rental charge for machine/day is 5,000)	240,000	2,400
2	Firefighting equipment (fire extinguishers)				100,000	1,000
3	Timber Precision/Polish	Lump sum			1,000,000	10,000
4	Water supply, sanitation facilities and ablution facilities	Lump sum			1,000,000	10,000
	Sub Total II				2,588,000	25,880
III	Seer Gayal Mosque				400.000	
1	Dismantling mosque structure and transporting to new site	Lump sum			400,000	4,000
2	Land acquisition of 505 square meter (1 canal) for relocation site of mosque	Lump sum			500,000	5,000

	ltem	Unit	Quantity	Rate. PKR	Amount, PKR	USD
3	Foundation and reassembling and new material provision, water supply, sanitation, etc.	Lump sum			2,000,000	20,000
	Sub-Total III				2,900,000	29,000
l V	Protection of Graveyards					
1	Provision of mud, and mud pitching	Grave	320 graves in 16 graveyar ds	700	224,000	2,240
2	Religious ceremony at each graveyard (including food for 100 people and bringing of religious leaders for Quran recitation)	Gravey ard	16	25,000	400,000	4,000
	Sub-Total IV				624,000	6,240
۷	Chance Finds					
1	Services of an archaeological expert over a period of one year (spread over 6 year of constructions phase)	Month	12	400,000	4,800,000	48,000
	Grand Total				164,855,500	1,648,555

Sr. No.	Description	Year	Unit	Quantity	Rate. USD	Amount, USD
1	Traffic Manager	2015-2022	Month	72	600	43,200
2	Traffic Clerk	2015-2022	Month	72	300	21,600
3	Guards 2	2015-2022	Month	72	150	10,800
4	Sub Offices on rent Dasu, Pattan, Besham, Thakot, Abbotabad, Haripur. (6 years at 6 offices)	2015-2022	Monthly	432	400	172,800
5	Furniture	2015-2022	Set	6	1000	12,000
6	Utility Bills	2015-2022	Month	72	400	28,800
7	Stationary	2015-2022	Lump sum			100,000
	Total					389,200

F. KKH Traffic Management Table F1 – KKH Traffic Management

G. Climate Change, GLOFs and Sedimentation in UIB

Table G1: Flood Telemetry Network

Description	Year	Unit	Quantity	Rate. USD	Amount, USD
Telemetric Equipment (Procurement of Radio Telemetric equipment complete including sensors, spares, towers, field testing and servicing equipment etc.)		Set	20	75,000	1,500,000
Training (Foreign Training of electronics staff for installation and maintenance of telemetric equipment.)		Number of Staff	4	25,000	100,000
Installation of 18 nos. telemetric stations.		Set	18	17,000	306,000
Vehicles (4x4 D/C P/U vehicles)		Number	2	50,000	100,000
Staff (Remuneration of staff and operation expenses for about 10 years)		Number	4	120,000	480,000
Weather Station (Rain Gauge, Snow Gauge, Evaporation Pan, Wind velocity and direction, sunshine, humidity and temperature recorder)		Set	1	25000	25,000
Staff (remuneration of Meteorologist and operational expenses for 10 years)		Number	1	120000	120,000
Total					2,631,000

J. Environmental Management and Enhancement of Resettlement Villages

Description	Year	Unit	Quantity	Rate. USD	Amount, USD	Remarks
Operation and management of solid waste and liquid waste facilities in the village, and also at schools and BHU	10	Villages	14	6000	840,000	500 USD per month for the period of 10 years for 14 villages.
Water supply treatment and maintenance	10	Villages	14	1200	168,000	100 USD per month for the period of 10 years for 14 villages.
Environmental Officer at each village	10	Villages	14	3000	420,000	250 USD per month for the period of 10 years for 14 villages.
Water supply and sanitation operator at each village	10	Villages	14	2400	336,000	200 USD per month for the period of 10 years for 14 villages.
Sanitation and hygiene promotion activities	10	14 villages	1	1000	10,000	1000 USD per year for the period of 10 years for 14 villages.
Cleaner/Sweeper/Garde ner	10	Villages	14	2400	336,000	200 USD per month for the period of 10 years for 14 villages.
Total					2,110,000	

Table J1. Environmental management and Enhancement of the Resettlement Villages

Annex – 9.3

ENVIRONMENTAL CODE OF PRACTICES

Introduction

The objective of the Environmental Code of Practices (ECPs) is to address all potential and general construction related impacts during implementation of the Dasu Hydropower Project (the Project or DHP). The ECPs will provide guidelines for best operating practices and environmental management guidelines to be followed by the contractors for sustainable management of all environmental issues. These ECPs shall be annexed to the general conditions of all the contracts, including subcontracts, carried out under the Project.

The list of ECPs prepared for the DHP is given below:

- ECP 1: Waste Management
- ECP 2: Fuels and Hazardous Goods Management
- ECP 3: Water Resources Management
- ECP 4: Drainage Management
- ECP 5: Soil Quality Management
- ECP 6: Erosion and Sediment Control
- ECP 7: Top Soil Management
- ECP 8: Topography and Landscaping
- ECP 9: Quarry Areas Development & Operation
- ECP 10: Air Quality Management
- ECP 11: Noise and Vibration Management
- ECP 12: Protection of Flora
- ECP 13: Protection of Fauna
- ECP 14: Protection of Fisheries
- ECP 15: Road Transport and Road Traffic Management
- ECP 16: Construction Camp Management
- ECP 17: Cultural and Religious Issues
- ECP 18: Workers Health and Safety

The ECPs will form the part of the contract documents and will be used as monitoring tool for compliance. It is mandatory for the main contractors procured directly by the project to include these ECPs in their subcontracts. Violation of the compliance requirements will be treated as non-compliance leading to the corrections or otherwise imposing penalty on the contractors. Contractors and subcontractors are requested to refer the Environmental Management Plan given in the EIA report of the Project for further information on corrective actions, performance indicators, and monitoring, auditing and reporting protocols.

ECP 1: Waste	Management
--------------	------------

Project Activity/ Impact Source	Environmental Impacts	Mitigation Measures/ Management Guidelines
General Waste	Soil and water pollution from the improper management of wastes and excess materials from the construction sites.	 Mitigation Measures/ Management Guidelines The Contractor shall Develop waste management plan for various specific waste streams (e.g., reusable waste, flammable waste, construction debris, food waste etc.) prior to commencing of construction and submit to supervision consultant for approval. Organize disposal of all wastes generated during construction in the designated disposal sites approved by the Project. Minimize the production of waste materials by 3R (Reduce, Recycle and Reuse) approach. Segregate and reuse or recycle all the wastes, wherever practical. Vehicles transporting solid waste shall be covered with tarps or nets to prevent spilling waste along the route. Train and instruct all personnel in waste management practices and procedures as a component of the environmental induction process. Provide refuse containers at each worksite. Request suppliers to minimize packaging where practicable. Place a high emphasis on good housekeeping practices. Maintain all construction sites in a cleaner, tidy and safe condition and provide and maintain appropriate facilities as temporary storage of all wastes before transportation and final disposal.
Hazardous Waste	Health hazards and environmental	 (plastic bottles). Plastic bag use should be avoided. The Contractor shall Collect chemical wastes in 200 liter drums (or
	impacts due to improper waste management	similar sealed container), appropriately labeled for safe transport to an approved chemical waste depot.
	practices	• Store, transport and handle all chemicals avoiding potential environmental pollution.
		 Store all hazardous wastes appropriately in bunded areas away from water courses.
		 Make available Material Safety Data Sheets (MSDS) for hazardous materials on-site during construction.
		 Collect hydrocarbon wastes, including lube oils, for safe transport off-site for reuse, recycling, treatment or disposal at approved locations.
		Construct concrete or other impermeable flooring to prevent seepage in case of spills.

Project Activity/ Impact Source	-	Mitigation Measures/ Management Guidelines
Fuels and hazardous goods.	Impacts Materials used in construction have a potential to be a source of contamination. Improper storage and handling of fuels, lubricants, chemicals and hazardous goods/materials on- site, and potential spills from these goods may harm the environment or health of construction workers.	 The Contractor shall Prepare spill control procedures and submit the plan for supervision consultant approval. Train the relevant construction personnel in handling of fuels and spill control procedures. Store dangerous goods in bunded areas on top of a sealed plastic sheet away from watercourses. Refueling shall occur only within bunded areas. Store and use fuels in accordance with material safety data sheets (MSDS). Make available MSDS for chemicals and dangerous goods on-site. Transport waste of dangerous goods, which cannot be recycled, to a designated disposal site. Provide absorbent and containment material (e.g., absorbent matting) where hazardous material are used and stored; and ensure personnel trained in the correct use. Provide protective clothing, safety boots, helmets, masks, gloves, goggles, to the construction personnel, appropriate to materials in use. Make sure all containers, drums, and tanks that are used for storage are in good condition and are labeled with expiry date. Any container, drum, or tank that is dented, cracked, or rusted might eventually leak. Check for leakage regularly to identify potential problems before they occur. Store and use fuels in accordance with material safety data sheets (MSDSs). Store all liquid fuels in fully bunded storage containers, with appropriate volumes, a roof, a collection point and appropriate filling/decanting point. Store hazardous materials above flood level considered for construction purposes Put containers and drums in temporary storages in clearly marked areas, where they will not be run over by vehicles or heavy machinery. The area shall preferably slope or drain to a safe collection area in the event of a spill. Take all precautionary measures when handling and storing fuels and lubricants, avoiding environmental pollution. Avoid the use of material with greater potential for contamination by substitu

ECP 2: Fuels and Hazardous Goods Management

Project Activity/ Impact Source	Environmental Impacts	Mitigation Measures/ Management Guidelines
Hazardous material and Waste	Water pollution from the storage, handling and disposal of hazardous materials and general construction waste, and accidental spillage	 The Contractor shall Follow the management guidelines proposed in ECPs 1 and 2. Minimize the generation of sediment, oil and grease, excess nutrients, organic matter, litter, debris and any form of waste (particularly petroleum and chemical wastes). These substances must not enter waterways or storm water systems.
Discharge from construction sites	Construction activities, sewerages from construction sites and work camps may affect the surface water quality. The construction works will modify groundcover and topography changing the surface water drainage patterns of the area. These changes in hydrological regime lead to increased rate of runoff, increase in sediment and contaminant loading, increased flooding, and effect habitat of fish and other aquatic biology.	 The Contractor shall Install temporary drainage works (channels and bunds) in areas required for sediment and erosion control and around storage areas for construction materials. Install temporary sediment basins, where appropriate, to capture sediment-laden run-off from site. Divert runoff from undisturbed areas around the construction site. Stockpile materials away from drainage lines Prevent all solid and liquid wastes entering waterways by collecting solid waste, oils, chemicals, bitumen spray waste and wastewaters from brick, concrete and asphalt cutting where possible and transport to a approved waste disposal site or recycling depot. Wash out ready-mix concrete agitators and concrete handling equipment at washing facilities off site or into approved bunded areas on site. Ensure that tires of construction vehicles are cleaned in the washing bay (constructed at the entrance of the construction site) to remove the mud from the wheels. This should be done in every exit of each construction vehicle to ensure the local roads are kept clean.
Soil erosion and siltation	Soil erosion and dust from the material stockpiles will increase the sediment and contaminant loading of surface water bodies.	 The Contractor shall Stabilize the cleared areas not used for construction activities with vegetation or appropriate surface water treatments as soon as practicable following earthwork to minimize erosion. Ensure that roads used by construction vehicles are swept regularly to remove dust and sediment. Water the loose material stockpiles, access roads and bare soils on an as required basis to minimize dust. Increase the watering frequency during periods of high risk (e.g. high winds).
Construction activities in water bodies	Construction works in the water bodies will increase	 The Contractor Shall Dewater sites by pumping water to a sediment basin prior to release off site – do not pump

ECP 3: Water Resources	Management
-------------------------------	------------

Project Activity/ Impact Source	Environmental Impacts	Mitigation Measures/ Management Guidelines	
	sediment and contaminant loading, and effect habitat of fish and other aquatic biology.	 directly off site. Monitor the water quality in the runoff from the site or areas affected by dredge/excavation plumes, and improve work practices as necessary. Protect water bodies from sediment loads by silt screen or other barriers. Minimize the generation of sediment, oil and grease, excess nutrients, organic matter, litter, debris and any form of waste (particularly petroleum and chemical wastes). These substances must not enter waterways or storm water systems. 	
		• Do not discharge cement and water curing used for cement concrete directly into water courses and drainage inlets.	
Drinking water	Untreated surface water is not suitable for drinking purposes due to presence of suspended solids and ecoli.	 The Contractor Shall Provide the drinking water that meets NEQS standards. Drinking water to be chlorinated at source, and ensure presence of residual chlorine 0.1 ~ 0.25 ppm as minimum after 30 minutes of chlorine contact time. 	

ECP 4: Drainage Management

Project Activity/ Impact Source	Environmental Impacts	Mitigation Measures/ Management Guidelines		
Excavation and earth works, and construction yards	Lack of proper drainage for rainwater/liquid waste or wastewater owing to the construction activities harms environment in terms of water and soil contamination, and mosquito growth.	 The Contractor shall Prepare a program to prevent/avoid standing waters, which supervision consultant will verify in advance and confirm during implementation. Provide alternative drainage for rainwater if the construction works/earth-fillings cut the established drainage line. Establish local drainage line with appropriate silt collector and silt screen for rainwater or wastewater connecting to the existing established drainage lines already there. 		
				 Rehabilitate road drainage structures immediately if damaged by contractors' road transports.
			 Build new drainage lines as appropriate and required for wastewater from construction yards connecting to the available nearby recipient water bodies. Ensure wastewater quality conforms to NEQS, before it is being discharged into the recipient water bodies. 	
		• Ensure that there will be no water stagnation at the construction sites and camps.		
		 Provide appropriate silt collector and silt screen at the inlet and manholes and periodically clean the drainage system to 		

Project Activity/ Impact Source	Environmental Impacts	Mitigation Measures/ Management Guidelines	
		avoid drainage congestion.	
		 Protect natural slopes of drainage channels to ensure adequate storm water drains. 	
		 Regularly inspect and maintain all drainage channels to assess and alleviate any drainage congestion problem. 	
Ponding of water	Health hazards due to mosquito breeding	 Do not allow ponding of water especially near the waste storage areas and construction camps. 	
		 Discard all the storage containers that are capable of storing of water, after use or store them in inverted position. 	

ECP 5: Soil Quality Management

Project Activity/ Impact Source	Environmental Impacts	Mitigation Measures/ Management Guidelines
Storage of hazardous and toxic chemicals	Spillageofhazardousandtoxic chemicalswillcontaminatethe	 The Contractor shall Strictly manage the wastes management plans proposed in ECP1 and storage of materials in ECP2.
	soils	 Construct appropriate spill contaminant facilities for all fuel storage areas.
		 Establish and maintain a hazardous material register detailing the location and quantities of hazardous substances including the storage, and their disposals.
		 Train personnel and implement safe work practices for minimizing the risk of spillage.
		 Identify the cause of contamination, if it is reported, and contain the area of contamination. The impact may be contained by isolating the source or implementing controls around the affected site.
		 Remediate the contaminated land using the most appropriate available method.
Construction material stock piles	Erosion from construction material stockpiles may contaminate the soils	 The Contractor shall Protect the toe of all stockpiles, where erosion is likely to occur, with silt fences, straw bales or bunds.

ECP 6: Erosion and Sediment Control

Project Activity/ Impact Source	Environmental Impacts	Mitigation Measures/ Management Guidelines
	Cleared areas and	The Contractor shall
construction sites	slopesaresusceptibleforerosion of top soils,which affectsthegrowthofvegetationand	 Reinstate and protect cleared areas as soon as possible. Cover unused area of disturbed or exposed surfaces immediately with mulch/grass turf/tree plantations.

Project Activity/ Impact Source	Environmental Impacts	Mitigation Measures/ Management Guidelines	
•	causes ecological imbalance.		
Construction activities and material stockpiles	The impact of soil erosion are (i) Increased run off and sedimentation causing a greater flood hazard to the downstream, and (ii) destruction of aquatic environment by erosion and/or deposition of sediment damaging the spawning grounds of fish	 The Contractor shall Locate stockpiles away from drainage lines. Protect the toe of all stockpiles, where erosion is likely to occur, with silt fences, straw bales or bunds. Remove debris from drainage paths and sediment control structures. Cover the loose sediments of construction material and water them if required. Divert natural runoff around construction areas prior to any site disturbance. Install protective measures on site prior to construction, for example, sediment traps. Install 'cut off drains' on large cut/fill batter slopes to control water runoff speed and hence erosion. Observe the performance of drainage 	
Soil erosion and siltation	Soil erosion and dust from the material stockpiles will increase the sediment and contaminant loading of surface water bodies.	 Stabilize the performance of dramage structures and erosion controls during rain and modify as required. The Contractor shall Stabilize the cleared areas not used for construction activities with vegetation or appropriate surface water treatments as soon as practicable following earthwork to minimize erosion. Ensure that roads used by construction vehicles are swept regularly to remove sediment. Water the material stockpiles, access roads and bare soils on an as required basis to minimize dust. Increase the watering frequency during periods of high risk (e.g. high winds). 	

ECP 7: Top Soil Management

Project Activity/ Impact Source	Environmental Impacts	Mitigation Measures/ Management Guidelines
Land clearing and earth works	Earthworks will impact the fertile top soils that are enriched with nutrients required for plant growth or agricultural development.	 The Contractor shall Strip the top soil to a depth of 15 cm and store in stock piles of height not exceeding 2m. Remove unwanted materials from top soil like grass, roots of trees and similar others. The stockpiles will be done in slopes of 2:1 to reduce surface runoff and enhance percolation through the mass of stored soil. Locate topsoil stockpiles in areas outside drainage lines and protect from erosion. Construct diversion channels and silt fences around the topsoil stockpiles to prevent erosion and loss of topsoil. Spread the topsoil to maintain the physico-

Project Activity/ Impact Source	Environmental Impacts	Mitigation Measures/ Management Guidelines
		chemical and biological activity of the soil. The stored top soil will be utilized for covering all disturbed area and along the proposed plantation sites.
		 Prior to the re-spreading of topsoil, the ground surface will be ripped to assist the bunding of the soil layers, water penetration and revegetation
Transport	Vehicular movement outside	Limit equipment and vehicular movements to within the approved construction zone.
	ROW or temporary access roads will affect the soil fertility of the agricultural lands	 Plan construction access to make use, if possible, of the final road alignment.

ECP 8: Topography and Landscaping

Project Activity/ Impact Source	Environmental Impacts	Mitigation Measures/ Management Guidelines
Land clearing and earth works	Construction activities especially earthworks will change topography and disturb the natural rainwater/flood water drainage as well as will change the local landscape.	 The Contractor shall Ensure the topography of the final surface of all raised lands (construction yards, approach roads and rails, access roads, etc.) are conducive to enhance natural draining of rainwater/flood water. Keep the final or finished surface of all the raised lands free from any kind of depression that causes water logging. Undertake mitigation measures for erosion control/prevention by grass-turfing and tree plantation, where there is a possibility of raincut that will change the shape of topography. Cover immediately the uncovered open surface that has no use of construction activities with grass-cover and tree plantation to prevent soil erosion and bring improved landscaping. Reinstate the natural landscape of the ancillary construction sites after completion of works.

ECP 9: Quarry Areas Development & Operation

Project Activity/ Impact Source	Environmental Impacts	Mitigation Measures/ Management Guidelines
Development and operation of borrow areas	Borrow areas will have impacts on local topography,	 The Contractor shall Use only approved quarry and borrow sites Identify new borrow and quarry areas in
	landscaping and natural drainage.	 consultation with Project Director, if required. Reuse excavated or disposed material available in the project to the maximum extent possible.
		 Store top soil for reinstatement and landscaping.

Project Activity/ Impact Source	Environmental Impacts	Mitigation Measures/ Management Guidelines
		 Develop surface water collection and drainage systems, anti-erosion measures (berms, revegetation etc.) and retaining walls and gabions where required. Implement mitigation measures in ECP 3: Water Resources Management, ECP 6: Erosion and Sediment Control
		 The use of explosive should be used in as much minimum quantity as possible to reduce noise, vibration and dust. Control dust and air quality deterioration by application of watering and implementing mitigation measures proposed in ECP 10: Air Quality Management
		 Noise and vibration control by ECP 11: Noise and Vibration Management.

ECP 10: Air Quality Management

Project Activity/ Impact Source	Environmental Impacts	Mitigation Measures/ Management Guidelines
Construction vehicular traffic	Air quality can be adversely affected by vehicle exhaust emissions and combustion of fuels.	 The Contractor shall Fit vehicles with appropriate exhaust systems and emission control devices. Maintain these devices in good working condition. Operate the vehicles in a fuel efficient manner. Cover hauls vehicles carrying dusty materials moving outside the construction site. Impose speed limits on all vehicle movement at the worksite to reduce dust emissions. Control the movement of construction traffic. Water construction materials prior to loading and transport. Service all vehicles regularly to minimize emissions.
		 Limit the idling time of vehicles not more than 2 minutes.
Construction machinery	Air quality can be adversely affected by emissions from machinery and combustion of fuels.	 The Contractor shall Fit machinery with appropriate exhaust systems and emission control devices. Maintain these devices in good working condition in accordance with the specifications defined by their manufacturers to maximize combustion efficiency and minimize the contaminant emissions. Proof or maintenance register shall be required by the equipment suppliers and contractors/subcontractors. Focus special attention on containing the emissions from generators.
		 Machinery causing excess pollution (e.g. visible smoke) will be banned from construction sites.

Project Activity/ Impact Source	Environmental Impacts	Mitigation Measures/ Management Guidelines	
•	•	Service all equipment regularly to minimize emissions.	
		 Provide filtering systems, duct collectors or humidification or other techniques (as applicable) to the concrete batching and mixing plant to control the particle emissions in all its stages, including unloading, collection, aggregate handling, cement dumping, circulation of trucks and machinery inside the installations. 	
Construction activities	Dust generation	The Contractor shall	
activities	ties from construction sites, material stockpiles and access roads is a nuisance in the environment and can be a health hazard, and also can affect the local crops;	 Water the material stockpiles, access roads and bare soils on an as required basis to minimize the potential for environmental nuisance due to dust. Increase the watering frequency during periods of high risk (e.g. high winds). Stored materials such as gravel and sand shall be covered and confined to avoid their being wind-drifted. 	
		 Restore disturbed areas as soon as practicable by vegetation/grass-turfing. 	
		 Store the cement in silos and minimize the emissions from silos by equipping them with filters. 	
		 Establish adequate locations for storage, mixing and loading of construction materials, in a way that dust dispersion is prevented because of such operations. 	
		 Not water as dust suppression on potentially contaminated areas so that a liquid waste stream will be generated. 	
		 Crushing of rocky and aggregate materials shall be wet-crushed, or performed with particle emission control systems. 	
		Not permit the burning of solid waste.	

ECP 11: Noise and Vibration Management

Project Activity/ Impact Source	Environmental Impacts	Mitigation Measures/ Management Guidelines
Construction vehicular traffic	Noise quality will be deteriorated due	The Contractor shallMaintain all vehicles in order to keep it in
	to vehicular traffic	good working order in accordance with manufactures maintenance procedures.
		 Make sure all drivers will comply with the traffic codes concerning maximum speed limit, driving hours, etc.
		 Organize the loading and unloading of trucks, and handling operations for the purpose of minimizing construction noise on the work site.
Construction	Noise and vibration	The Contractor shall

Project Activity/ Impact Source	Environmental Impacts	Mitigation Measures/ Management Guidelines
machinery	may have an impact on people, property, fauna, livestock and the natural environment.	 Appropriately site all noise generating activities to avoid noise pollution to local residents. Use the quietest available plant and equipment. Maintain all equipment in order to keep it in good working order in accordance with manufactures maintenance procedures. Equipment suppliers and contractors shall present proof of maintenance register of their equipment. Install acoustic enclosures around generators to reduce noise levels. Fit high efficiency mufflers to appropriate construction equipment. Avoid the unnecessary use of alarms, horns and sirens.
Construction activity	Noise and vibration may have an impact on people, property, fauna, livestock and the natural environment.	 The Contractor shall Notify adjacent landholders prior any typical noise events outside of daylight hours. Educate the operators of construction equipment on potential noise problems and the techniques to minimize noise emissions. Employ best available work practices on-site to minimize occupational noise levels. Install temporary noise control barriers where appropriate. Notify affected people if major noisy activities will be undertaken, e.g. blasting. Plan activities on site and deliveries to and from site to minimize impact. Monitor and analyze noise and vibration results and adjust construction practices as required. Avoid undertaking the noisiest activities, where possible, when working at night near the residential areas.

ECP 12: Protection of Flora

Project Activity/ Impact Source	Environmental Impacts	Mitigation Measures/ Management Guidelines
Vegetation clearance	Local flora are important to provide shelters for the birds, offer fruits and/or timber/fire wood, protect soil erosion and overall keep the environment very	 The Contractor shall Minimize disturbance to surrounding vegetation. Use appropriate type and minimum size of machine to avoid disturbance to adjacent vegetations. Get approval from supervision consultant for clearance of vegetation.
	friendly to human- living. As such damage to flora has	 Make selective and careful pruning of trees where possible to reduce need of tree removal.

Project Activity/ Impact Source	Environmental Impacts	Mitigation Measures/ Management Guidelines
	wide range of adverse	 Control noxious weeds by disposing of at designated dump site or burn on site.
	environmental impacts.	 Clear only the vegetation that needs to be cleared in accordance with the engineering plans and designs. These measures are applicable to both the construction areas as well as to any associated activities such as sites for stockpiles, disposal of fill a, etc.
		 Not burn off cleared vegetation – where feasible, chip or mulch and reuse it for the rehabilitation of affected areas, temporary access tracks or landscaping. Mulch provides a seed source, can limit embankment erosion, retains soil moisture and nutrients, and encourages re-growth and protection from weeds.
		 Return topsoil and mulched vegetation (in areas of native vegetation) to approximately the same area of the roadside it came from.
		 Avoid work within the drip-line of trees to prevent damage to the tree roots and compacting the soil.
		 Minimize the length of time the ground is exposed or excavation left open by clearing and re-vegetate the area at the earliest practically possible.
		 Ensure excavation works occur progressively and re-vegetation done at the earliest
		 Provide adequate knowledge to the workers regarding nature protection and the need of avoid felling trees during construction
		 Supply appropriate fuel in the work camps to prevent fuel wood collection.

ECP 13: Protection of Fauna

Project Activity/ Impact Source	Environmental Impacts	Mitigation Measures/ Management Guidelines
Construction activities	The location of construction activities can result in the loss of wild life habitat and habitat quality,	 The Contractor shall Limit the construction works within the designated sites allocated to the contractors. check the site for animals trapped in, or in danger from site works and use a qualified person to relocate the animal.
	Impact on migratory birds, its habitat and its active nests	 The Contractor shall Not be permitted to destruct active nests or eggs of migratory birds. Minimize the tree removal during the bird breeding season. If works must be continued during the bird breeding season, a nest survey will be conducted by a qualified biologist prior to commence of works to identify and locate active nests. If bird nests are located/ detected within the

Project Activity/ Impact Source	Environmental Impacts	Mitigation Measures/ Management Guidelines
	Impaoto	ledges and roadside embankments then those areas should be avoided.
		 Petroleum products should not come in contact with the natural and sensitive ecosystems. Contractor must minimize the release of oil, oil wastes or any other substances harmful to migratory birds' habitats, to any waters, wetlands or any areas frequented by migratory birds.
Vegetation clearance	Clearance of vegetation may impact shelter,	 The Contractor shall Restrict the tree removal to the minimum numbers required.
	feeding and/or	Relocate hollows, where appropriate.
	breeding and/or physical destruction and severing of habitat areas	• Fell the hollow bearing trees in a manner which reduces the potential for fauna mortality. Felled trees will be inspected after felling for fauna and if identified and readily accessible will be removed and relocated or rendered assistance if injured. After felling, hollow bearing trees will remain unmoved overnight to allow animals to move of their own volition.
Night time	Lighting from	The Contractor shall
lighting	construction sites and construction camps may affect the visibility of night	 Use lower wattage flat lens fixtures that direct light down and reduce glare, thus reducing light pollution,
	time migratory birds that use the moon	 Avoid flood lights unless they are absolutely required.
	and stars for navigation during	 Use motion sensitive lighting to minimize unneeded lighting.
	their migrations.	 Use, if possible, green lights that are considered as bird's friendly lighting instead of white or red colored lights.
		 Install light shades or plan the direction of lights to reduce light spilling outside the construction area.
Construction	Illegal poaching	The Contractor shall
camps		 Provide adequate knowledge to the workers regarding protection of flora and fauna, and relevant government regulations and punishments for illegal poaching.
		 Ensure that staff and Subcontractors are trained and empowered to identify, address and report potential environmental problems.

ECP 14: Protection of Fish

Project Activity/ Impact Source	Environmental Impacts Mitigation Measures/ Management Guidelin	
Construction	The main potential	The Contractor shall
activities in River	impacts to fisheries are hydrocarbon spills and leaks	 Ensure the construction equipment used in the river are well maintained and do not have oil leakage to contaminate river water.
	from riverine	Contain oil immediately on river in case of

Project Activity/ Impact Source	Environmental Impacts	Mitigation Measures/ Management Guidelines	
	transport and disposal of wastes into the river	accidental spillage from equipment; make an emergency oil spill containment plan to be supported with enough equipments, materials and human resources.	
		 Do not dump wastes, be it hazardous or non- hazardous into the nearby water bodies or in the river. 	
Construction activities on the land	The main potential impacts to aquatic flora and fauna River are increased suspended solids from earthworks erosion, sanitary discharge from work camps, and hydrocarbon spills	 The Contractor shall follow mitigation measures proposed in ECP 3 Water Resources Management and EC4: Drainage Management. 	

ECP 15:	Road	Transport	and Road	Traffic	Management
---------	------	-----------	----------	---------	------------

Project Activity/ Impact Source	Environmental Impacts	Mitigation Measures/ Management Guidelines	
Construction vehicular traffic	struction Increased traffic cular traffic use of road by construction vehicles will affect the movement of normal road traffics and the safety of	 The Contractor shall Strictly follow the Project's 'Traffic Management Plan' and work with close coordination with the Traffic Management Unit. Prepare and submit additional traffic plan, if any of his traffic routes are not covered in the 	
	the road-users.	 Project's Traffic Management Plan, and requires traffic diversion and management. Include in the traffic plan to ensure uninterrupted traffic movement during construction: detailed drawings of traffic arrangements showing all detours, temporary road, temporary bridges temporary diversions, necessary barricades, warning signs / lights, road signs etc. Provide signs at strategic locations of the roads complying with the schedules of signs contained in the Pakistan Traffic 	
	Accidents and spillage of fuels and chemicals	 Regulations. The Contractor shall Restrict truck deliveries, where practicable, to day time working hours. Restrict the transport of oversize loads. Operate vehicles, if possible, to non-peak periods to minimize traffic disruptions. Enforce on-site speed limit. 	

Project Activity/ Impact Source	Environmental Impacts	Mitigation Measures/ Management Guidelines	
Siting and Location of construction camps	Campsites for construction workers are the important locations that have significant impacts such as health and safety hazards on local resources and infrastructure of nearby communities.	 The Contractor shall Locate the construction camps with in the designed sites or at areas which are acceptable from environmental, cultural or social point of view; and approved by the supervision consultant. Consider the location of construction camps away from communities in order to avoid social conflict in using the natural resources such as water or to avoid the possible adverse impacts of the construction camps on the surrounding communities. Submit to the supervision consultant for approval a detailed layout plan for the development of the construction camp showing the relative locations of all temporary buildings and facilities that are to be constructed together with the location of site roads, fuel storage areas (for use in power supply generators), solid waste management and dumping locations, and drainage facilities, prior to the development of the construction camps. Local authorities responsible for health, religious and security shall be duly informed on the set up of camp facilities cover public 	
Construction Camp Facilities	Lack of proper infrastructure facilities , such as housing, water supply and sanitation facilities will increase pressure on the local services and generate substandard living standards and health hazards.	 health, social and security matters. Contractor shall provide the following facilities in the campsites Adequate housing for all workers. Safe and reliable water supply, which should meet NEQS. Drinking water to be chlorinated at source, and ensure presence of residual chlorine 0.1 ~ 0.25 ppm as minimum after 30 minutes of chlorine contact time (WHO guideline). Hygienic sanitary facilities and sewerage system. The toilets and domestic waste water will be collected through a common sewerage. Provide separate latrines and bathing places for males and females with total isolation by location. The minimum number of toilet facilities required is one toilet for every ten persons. Treatment facilities for sewerage of toilet and domestic wastes. Storm water drainage facilities. Paved internal roads. Provide child crèches for women working construction site. The crèche should have facilities for dormitory, kitchen, indoor and outdoor play area. Schools should be attached to these crèches so that children are 	

Project Activity/ Impact Source	Environmental Impacts	Mitigation Measures/ Management Guidelines	
		 not deprived of education whose mothers are construction workers. Provide in-house community/common entertainment facilities. Dependence of local entertainment outlets by the construction camps to be discouraged/prohibited to the extent possible. 	
Disposal of waste	Management of wastes is crucial to minimize impacts on the environment	 The Contractor shall Ensure proper collection and disposal of solid wastes within the construction camps. Insist waste separation by source; organic wastes in one container and inorganic wastes in another container at household level. Store inorganic wastes in a safe place within the household and clear organic wastes on daily basis to waste collector. Establish waste collection, transportation and disposal systems with the manpower and equipments/vehicles needed. Do not establish site specific landfill sites. All solid waste will be collected and removed from the work camps and disposal sites. 	
Fuel supplies for cooking purposes	Illegal sourcing of fuel wood by construction workers will impact the natural flora and fauna	 The Contractor shall Provide fuel to the construction camps for their domestic purpose, in order to discourage them to use fuel wood or other biomass. Made available alternative fuels like natural gas or kerosene on ration to the workforce to prevent them using biomass for cooking. Conduct awareness campaigns to educate workers on preserving the protecting the biodiversity and wildlife of the project area, and relevant government regulations and punishments on wildlife protection. 	
Health and Hygiene	There will be a potential for diseases to be transmitted including malaria, exacerbated by inadequate health and safety practices. There will be an increased risk of work crews spreading sexually transmitted infections and HIV/AIDS.	 The Contractor shall Provide adequate health care facilities within construction sites. Provide first aid facility round the clock. Maintain stock of medicines in the facility and appoint fulltime designated first aider or nurse. Provide ambulance facility for the laborers during emergency to be transported to nearest hospitals. Initial health screening of the laborers coming from outside areas. Train all construction workers in basic sanitation and health care issues and safety matters, and on the specific hazards of their work. Provide HIV awareness programming, including STI (sexually transmitted infections) 	

Project Activity/ Impact Source	Environmental Impacts	Mitigation Measures/ Management Guidelines
		and HIV information, education and communication for all workers on regular basis.
		 Provide adequate drainage facilities throughout the camps to ensure that disease vectors such as stagnant water bodies and puddles do not form. Regular mosquito repellant sprays during rainy season in offices and construction camps and yards.
		 Not dispose food waste openly as that will attract rats and stray dogs.
		 Carryout short training sessions on best hygiene practices to be mandatorily participated by all workers. Place display boards at strategic locations within the camps containing messages on best hygienic practices.
Safety	In adequate safety facilities to the construction camps may create security problems and fire hazards	 Provide appropriate security personnel (police or private security guards) and enclosures to prevent unauthorized entry in to the camp area.
	11020105	 Maintain register to keep a track on a head count of persons present in the camp at any given time.
		 Encourage use of flameproof material for the construction of labor housing / site office. Also, ensure that these houses/rooms are of sound construction and capable of withstanding wind storms/cyclones.
		 Provide appropriate type of fire fighting equipments suitable for the construction camps
		 Display emergency contact numbers clearly and prominently at strategic places in camps.
		 Communicate the roles and responsibilities of laborers in case of emergency in the monthly meetings with contractors.
Site Restoration	Restoration of the construction camps to original condition requires demolition of construction camps.	 The Contractor shall Dismantle and remove from the site all facilities established within the construction camp including the perimeter fence and lockable gates at the completion of the construction work.
		 Dismantle camps in phases and as the work gets decreased and not wait for the entire work to be completed.
		 Give prior notice to the laborers before demolishing their camps/units.
		 Maintain the noise levels within the national standards during demolition activities.
		 Different contractors should be hired to demolish different structures to promote recycling or reuse of demolished material.

Project Activity/ Impact Source	Environmental Impacts	Mitigation Measures/ Management Guidelines	
		 Reuse the demolition debris to a maxim extent. Dispose remaining debris at designated waste disposal site. 	
		 Handover the construction camps with all built facilities as it is if agreement between both parties (contactor and land-owner) has been made so. 	
		 Restore the site to its condition prior to commencement of the works or to an agreed condition with the landowner. 	

ECP 17: Cultural and Religious Issues

Project Activity/	Environmental	Mitigation Measures/ Management Guidelines
	Impacts	
Project Activity/ Impact Source Construction activities near religious and cultural sites		 Mitigation Measures/ Management Guidelines The Contractor shall Communicate to the public through community consultation regarding the scope and schedule of construction, as well as certain construction activities causing disruptions or access restriction. Not block access to cultural and religious sites, wherever possible. Restrict all construction activities within the foot prints of the construction sites. Stop construction works that produce noise (particularly during prayer time) should there be any mosque/religious/educational institutions close to the construction sites and users make objections. Take special care and use appropriate equipment when working next to a cultural/religious institution. Stop work immediately and notify the site manager if, during construction, an archaeological or burial site is discovered. It is an offence to recommence work in the vicinity of the site until approval to continue is given. Provide separate prayer facilities to the construction workers.
		 Show appropriate behavior with all construction workers especially women and elderly people.
		 Allow the workers to participate in praying during construction time.
		 Resolve cultural issues in consultation with local leaders and supervision consultants.
		 Establish a mechanism that allows local people to raise grievances arising from the construction process.
		 Inform the local authorities responsible for health, religious and security duly informed before commencement of civil works so as to maintain effective surveillance over public health, social and security matters.

ECP 18: Worker	Health and Safety
----------------	-------------------

Project Activity/ Impact Source	Environmental Impacts	Mitigation Measures/ Management Guidelines		
Best practices	Construction works may pose health and safety risks to the construction workers and site visitors leading to severe injuries and deaths. The population in the proximity of the construction site and the construction workers will be exposed to a number of (i) biophysical health risk factors, (e.g. noise, dust, abamiagla	 The Contractor shall Implement suitable safety standards for all workers and site visitors which should not be less than those laid down on the international standards (e.g. International Labor Office guideline on 'Safety and Health in Construction; World Bank Group's 'Environmental Health and Safety Guidelines') and contractor's own national standards or statutory regulations, in addition to complying with Pakistan standards. Provide the workers with a safe and healthy work environment, taking into account inherent risks in its particular construction activity and specific classes of hazards in the work areas. Provide personal protection equipment (PPE) for workers, such as safety boots, helmets, masks, gloves, protective clothing, goggles, 		
	chemicals, construction material, solid waste, waste water, vector transmitted diseases etc), (ii) risk factors resulting from human behavior (e.g. STD, HIV etc) and (iii) road accidents from construction traffic.	 full-face eye shields, and ear protection. Maintain the PPE properly by cleaning dirty ones and replacing them with the damaged ones. Safety procedures include provision of information, training and protective clothing to workers involved in hazardous operations and proper performance of their job. Appoint an environment, health and safety manager to look after the health and safety of the workers. Inform the local authorities responsible for health, religious and security duly informed before commencement of civil works and establishment of construction camps so as to maintain effective surveillance over public health, social and security matters. 		
	Child and pregnant labor	 The Contractor shall not hire children of less than 14 years of age and pregnant women or women who delivered a child within 8 preceding weeks. 		
Accidents	Lack of first aid facilities and health care facilities in the immediate vicinity will aggravate the health conditions of the victims	 The Contractor shall Ensure health care facilities and first aid facilities are readily available. Appropriately equipped first-aid stations should be easily accessible throughout the place of work. Document and report occupational accidents, diseases, and incidents. 		
		 Prevent accidents, injury, and disease arising from, associated with, or occurring in the course of work by minimizing, so far as reasonably practicable, the causes of hazards, in a manner consistent with good international industry practice. Identify potential hazards to workers, 		

Project Activity/ Impact Source	Environmental Impacts	Mitigation Measures/ Management Guidelines
		particularly those that may be life-threatening and provide necessary preventive and protective measures.
		 Provide awareness to the construction drivers to strictly follow the driving rules.
		 Provide adequate lighting in the construction area, inside the tunnels, inside the powerhouse cavern and along the roads.
Construction Camps	Lack of proper infrastructure facilities, such as housing, water supply and sanitation facilities will increase pressure on the local services and generate substandard living standards and health hazards.	 The Contractor shall provide the following facilities in the campsites to improve health and hygienic conditions as mentioned in ECP 16 Construction Camp Management Adequate ventilation facilities Safe and reliable water supply. Hygienic sanitary facilities and sewerage system. Treatment facilities for sewerage of toilet and domestic wastes Storm water drainage facilities. Recreational and social facilities Safe storage facilities for petroleum and other chemicals in accordance with ECP 2 Solid waste collection and disposal system in accordance with ECP1. Arrangement for trainings Paved internal roads. Sick bay and first aid facilities
Water and sanitation facilities at the construction sites	Lack of Water sanitation facilities at construction sites cause inconvenience to the construction workers and affect their personal hygiene.	 The contractor shall Provide portable toilets at the construction sites, if about 25 people are working the whole day for a month. Location of portable facilities should be at least 6 m away from storm drain system and surface waters. These portable toilets should be cleaned once a day and all the sewerage should be pumped from the collection tank once a day and should be brought to the common septic tank for further treatment. Provide safe drinking water facilities to the construction workers at all the construction sites.
Other ECPs	Potential risks on health and hygiene of construction workers and general public	 The Contractor shall follow the following ECPs to reduce health risks to the construction workers and nearby community ECP 2: Fuels and Hazardous Goods Management ECP 4: Drainage Management ECP 10: Air Quality Management ECP 11: Noise and Vibration Management ECP 15: Road Transport and Road Traffic Management

Project Activity/ Impact Source	Environmental Impacts	Mitigation Measures/ Management Guidelines
Trainings	Lack of awareness and basic knowledge in health care among the construction workforce, make them susceptible to potential diseases.	 The Contractor shall Train all construction workers in basic sanitation and health care issues (e.g., how to avoid malaria and transmission of sexually transmitted infections (STI) HIV/AIDS. Train all construction workers in general health and safety matters, and on the specific hazards of their work. Training should consist of basic hazard awareness, site specific hazards, safe work practices, and emergency procedures for fire, evacuation, and natural disaster, as appropriate. Implement malaria, HIV/AIDS and STI education campaign targeting all workers hired, international and national, female and male, skilled, semi- and unskilled occupations, at the time of recruitment and thereafter pursued throughout the construction phase on ongoing and regular basis. This should be complemented by easy access to condoms at the workplace as well as to voluntary counseling and testing.

Annex – 10.1

MACHINERY USED IN CONSTRUCTION OF KKH

No	Description	Construction Machinery	Number (for KKH1)	Number (for KKH2)
1	Road way Excavation	Bull Dozer (200 Hp)	2	6
		Front End Loader	1	3
		Dump Truck	2	6
2	Formation of Embankment	Grader (165 Hp)	2	3
		Combination of Rollers	1	3
		Water Tanker	1	3
3	Base Course (WBM)	Power Broom	2	4
		Front End Loader	1	3
		Dumper	2	6
		Combination of Rollers	2	6
4	Asphaltic Base Course/Wearing Course Plant Mix	Power Broom	2	3
		Front End Loader	1	2
		Asphalt Plant	1	1
		Paver (4m wide)	1	3
		Dumper (10-18 t)	3	6
		P.T.R. (9 wheeler)	1	3
		Tandem Vibration Roller (10-12 T)	1	3
5	Bituminuous Prime Coat/Tack Coat	Power Broom	1	1
		Engine Opertaed Bitumen Pressure Distributor	1	1
6	Concrete Production	Concrete Batching Plant (30 cubic meter/H)	1	2
		Front End Loader	1	3
		Concrete Transit Mixeer	1	2
		Vibrator	1	2
7	Pre=stressed Concrete Structures	Pre-stressting Equipment	1	2
		Equipment for Launching Beams	1	1

Annex – 10.2

CONSTRUCTION OF KKH: POTENTIAL ENVIRONMENTAL IMPACTS, MITIGATION AND MONITORING MEASURES

 Table 1: Impacts and Mitigation Measures of KKH Relocation

Activity/Issue/	Environmental Impacts	Mitigation Management Guidelines	Institutional Re	sponsibilities
Impact Source	Environmental Impacts	Mitigation Measures/ Management Guidelines	Implementation	Supervision
A. Pre-Construction	1			
Land acquisition and resettlement	Acquisition of 11 ha of land and relocation of 24 households (excluding the area acquired for reservoir)	Compensation in accordance with the Projects Resettlement Action Plan	Social Unit -DHP	CSC
Contractors Environmental Action Plan	Environmental impacts from the construction activities	 Contractor will prepare the following plans and submit to EU-DHP for approval Site specific sediment and erosion control plan for each construction site; Site specific camps management plan for each camp Site specific spoil management and disposal plan for each construction site Site specific waste management plan for each construction site; Site specific pollution control (air, noise) plan for each construction site; Site specific traffic management plan for each construction site; Site specific decommissioning and landscaping plans for spoil disposal sites, temporary roads and other disturbed areas; Complaints logging system and response plan; Standard Operating Procedures for pollution spills 	Contractor	EU-DHP/EU- CSC

Activity/Issue/	Environmental Impacts	Mitigation Macauras/Management Quidalines	Institutional Responsibilities	
Impact Source	Environmental Impacts	Mitigation Measures/ Management Guidelines	Implementation	Supervision
		 Demobilization plan after completion of works 		
B. Construction				
Landslides	Excavation activities may trigger potential landslides	 EMP Sub-Plan 3: Physiography and Geology Monitor landslides areas for displacement Surface water management for prevention of landslides by construction of temporary drainage systems. Implement slope stabilization techniques to prevent erosion and further triggering of landslides 	Contractor	EU-DHP/EU- CSC
Spoils		 Minimize generation of the spoil by reusing the excavated rock as road fill and aggregates for cement Contractors management plans on spoil management and disposal 	Contractor	EU-DHP/EU- CSC
Soil	Soil erosion and soil pollution from the construction sites	 Implement ECPs 5, 6, and 7 on Soil Quality Management, Erosion and Sediment Control and Top Soil Management 	Contractor	EU-DHP/EU- CSC
Topography /Landscape	Construction activities especially earthworks will change topography and disturb the natural rainwater/flood water drainage as well as will change the local landscape.	 Ensure the topography of the final surface of all raised lands are conducive to enhance natural draining of rainwater/flood water; Reinstate the natural landscape of the ancillary construction sites after completion of works 	Contractor	EU-DHP/EU- CSC
Borrow areas	Degradation of borrow areas	 Only approved borrow and quarry sites will be used by the contractors and produce copy of necessary government licenses to the DHP before procurement. Implement mitigation measures in ECP 9: Quarry Area Development and Restoration 	Contractor	EU-DHP/EU- CSC
Water Quality	Water pollution from discharges of construction sites, fuel and material storage sites, soil erosion, workers	 Implement mitigation measures proposed in the following ECPs: CP 2: Fuels and Hazardous Goods 	Contractor	EU-DHP/EU- CSC

Activity/Issue/	Environmental Impacts	Mitigation Management Guidalines	Institutional Responsibilities	
Impact Source	Environmental Impacts	Mitigation Measures/ Management Guidelines	Implementation	Supervision
	camps, etc.	Management ECP 3: Water Resources Management ECP 4: Drainage Management ECP 6: Erosion and Sediment Control Any discharges to the river or streams should meet the NEQS		
Air Quality	Air quality can be adversely affected by vehicle/machinery exhaust emissions	 Vehicle exhaust emissions should comply with NEQS Maintenance of vehicle/equipment in accordance with manufacturer's recommendation Implement mitigation measures ECP10: Air Quality Management Asphalt plant should be located minimum 1 km away from the settlement areas Water the unpaved roads and material storage sites to control the dust 	Contractor	EU-DHP/EU- CSC
Noise and Vibration	High noise and vibration levels due to construction traffic, equipment use and blasting activities	 Noise from vehicle exhausts should comply with NEQS Implement noise control measures given in ECP11: Noise and vibration management No construction activities during night time within 500 m from the settlement areas Notify adjacent landholders prior any typical noise events such as blasting Install temporary noise control barriers where appropriate 	Contractor	EU-DHP/EU- CSC
Waste	Soil and water pollution from improper management of waste and excess material from the construction sites	 Implement mitigation measures proposed in ECP 1: Waste Management Collect and transport waste to project's landfill site. 	Contractor	EU-DHP/EU- CSC
Hazardous Substances	Potential spills from improper storage and handling of asphalt and fuels.	 Implement mitigation measures in ECP 2: Fuels and Hazardous Goods Management Trained personal with appropriate spill control mechanism shall be available at the site 	Contractor	EU-DHP/EU- CSC

Activity/Issue/	Environmental Imports	Mitigation Management Cuidelines	Institutional Responsibilities	
Impact Source	Environmental Impacts	Mitigation Measures/ Management Guidelines	Implementation	Supervision
Vegetation clearance	Cutting of about 700 trees and shrubs	 Implement mitigation measures proposed in ECP12: Protection of Flora Tree plantation to compensate the loss of trees with a target to develop about 5 trees for each tree cut. Provide fuel to the construction camps for their domestic purpose, in order to discourage them to use fuel wood 	Contractor	EU-DHP/EU- CSC
Birds	Impact on migratory birds, its habitat and its active nests. Noise impacts from construction activities	 Implement mitigation measures proposed in ECP13: Protection of Fauna Implementation of noise and dust control measures Training of workers in protection of wildlife 	Contractor	EU-DHP/EU- CSC
Wildlife	Noise and vibration impacts on the wildlife in Kaigah conservation area	 Noise and vibration measurements at Kaigah CCA should not exceed NEQS Training of workers in protection of wildlife Implement mitigation measures proposed in ECP13: Protection of Fauna 	Contractor	EU-DHP/EU- CSC
Fish	Pollution of water by concrete and discharges from construction areas will affect the fish and other aquatic species	 Implement mitigation measures provided in ECP 14: Protection of Fisheries. All necessary measures will be taken to prevent earthworks related to the road and bridges from impeding cross drainage at tributaries / streams Waste water discharges should meet NEQS 	Contractor	EU-DHP/EU- CSC
Traffic	Increased traffic use of road by construction vehicles will affect the movement of normal road traffics and the safety of the road-users	 Contractor will prepare his traffic management plan for approval of DHP Work in coordination with the DHP's Traffic Management Unit Implement the mitigation measures proposed in ECP 15: Road Transport and Road Traffic Management 	Contractor	EU-DHP/EU- CSC
Physical and Cultural Resources	Chance finds of archeological sites	 Chance find procedures are included in the contract documents Stop work immediately and notify the site manager if, during construction an archaeological site is discovered. DHP will communicate with KP DOAM. 	Contractor	EU-DHP/EU- CSC

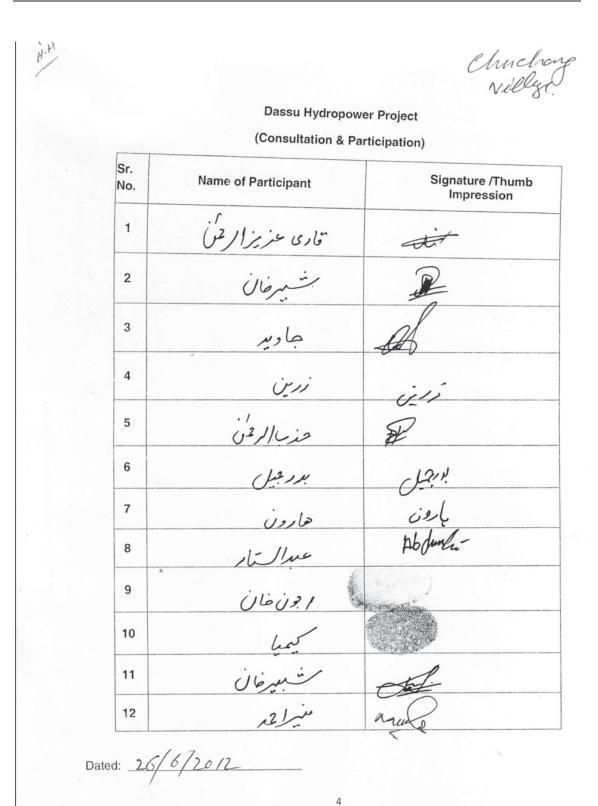
Activity/Issue/	Environmental Impacts	Militation Management Cuidalines	Institutional Responsibilities	
Impact Source	Environmental Impacts	Mitigation Measures/ Management Guidelines	Implementation	Supervision
		Resume the work after instructions received from KP DOAM		
Workers Health and Safety	Construction works may pose health and safety risks to the construction workers and site visitors leading to severe injuries and deaths.	 Implement suitable safety standards for all workers and site visitors which should not be less than those laid down on the international standards, Provide personal protection equipment (PPE) for workers, such as safety boots, helmets, masks, gloves, protective clothing, goggles, full-face eye shields, and ear protection. Maintain the PPE properly by cleaning dirty ones and replacing them with the damaged ones. Implement mitigation measures in ECP 18: Workers Health and Safety Provide adequate water supply and sanitation facilities at the construction sites and camps 	Contractor	EU-DHP/EU- CSC
Construction camps	Campsites for construction workers are the important locations that have significant impacts such as health and safety hazards on local resources and infrastructure of nearby communities.	 The Contractor shall provide adequate housing for all workers with all necessary basic facilities such as water supply and sanitation facilities, sewage treatment, in-house entertainment facilities Train all construction workers in basic sanitation and health care issues (e.g., how to avoid malaria and transmission of sexually transmitted infections (STI) HIV/AIDS). Implement mitigation measures proposed in ECP 16: Construction Camp Management 	Contractor	EU-DHP/EU- CSC
Demobilisation of Contractor	Pollution of construction sites with oil spills	 Clean up and restoration of temporary construction areas Disposal of waste material at the construction site. 	Contractor	EU-DHP/EU- CSC
C. Operation and Ma	aintenance Phase			
Landslides	Construction of the road can trigger development of the landslides in the landslide prone areas	 Permanent monitoring using crack gauges, where applicable Maintenance of surface water drainage systems, 	NHA	EU-DHP

Activity/Issue/	Environmental Impacts	Mitigation Measures/ Management Guidelines	Institutional Responsibilities	
Impact Source	Environmental impacts	miligation measures/ management Guidennes	Implementation	Supervision
		 and retaining walls installed for minimizing landslides Employment of road gangs for immediate clearance of landslides 		
Erosion	Erosion from hill slopes, road cuts and spoil disposal sites.	 Develop plans and designs such as mechanical means and landscaping for control of erosion 	EU-DHP through a follow up study	PD - DHP

Table 2: Environmental Monitoring Plan during Construction and Operation

Parameter	Location	Moone of Menitoring	Freedoment	Responsible Agency	
Parameter Location		Means of Monitoring	Frequency	Implementation	Supervision
During Construct	ion				
Landslide	Identified potential landslide areas	Visual inspection and displacement monitoring	Monthly	Contractor	EU-DHP/ EU-CSC
Erosion	Cut slopes, embankments and rock disposal sites	Visual inspection of erosion prevention measures and occurrence of erosion	Monthly	Contractor	EU-DHP/
Borrow areas	Borrow sites	Visual inspection	Monthly	Contractor	EU-CSC
Surface water quality	At all tributaries and sites near down stream	Sampling and analysis of surface water quality and waste water quality	Quarterly (during bridge construction)	Contractor	EU-DHP/
Air Quality (dust, smoke)	Construction sites	Visual inspection to ensure good standard equipment is in use and dust suppression measures (spraying of waters) are in place; asphalt plant is located more than 1 km from residential areas	Daily	Contractor	EU-CSC
Air Quality (PM, NO2, SO2, CO)	Near the sensitive sites and settlements (as directed by CSC)	Air quality monitoring	Quarterly	Contractor	EU-DHP/
Noise	Construction sites	Visual inspection to ensure good standard equipment are in use	Weekly	Contractor	EU-CSC
	Construction sites	Ensure work restriction between 21:00-06:00 close to the sensitive locations	Weekly	Contractor	EU-DHP/

Deremeter	Location	Meene of Menitoring	F rom on out	Responsible Agency	
Parameter	Location	Means of Monitoring	Frequency	Implementation	Supervision
	Nose measurement	Hourly, day and night time noise levels (dB) monitoring using noise meters	Quarterly	Contractor	EU-CSC
Waste Management	Construction camps and construction sites	Visual inspection that solid waste is disposed at designated site	Monthly	Contractor	EU-DHP/
Hydrocarbon and chemical storage	Construction camps	Visual Inspection of storage facilities	Monthly	Contractor	EU-CSC
Traffic Safety	Haul Roads	Visual inspection to see whether proper traffic signs are placed and flagmen for traffic management are engaged	Monthly	Contractor	EU-DHP/
Drinking water and sanitation	In construction sites and construction camps	Ensure the construction workers are provided with safe water and sanitation facilities in the site	Weekly	Contractor	EU-CSC
Cultural and archeological Sites	At al I work sties	Visual observation for chance finding	Daily	Contractor	EU-DHP/
Safety of workers	At work sites	Usage of Personal Protective equipment	Monthly	Contractor	EU-CSC
Contractors demobilization	Construction work areas, contractor yards and construction camps	Visual inspection to ensure removal of all buildings and equipment from the site. The site is clean and was restored to original condition	Before contractor's demobilization	Contractor	EU-DHP/
During Operation	During Operation and Maintenance				
Landslides and landscapes	Along KKH alignment	Visual inspection of long-term degradation of natural landscape at land strips and slopes adjacent to road. Development of landslides, rock falls and other natural hazardous process. Visual Impacts. Change of drainage patterns, erosion and degradation of vegetation	Quarterly	DHP	External Monitor


Annex – 12.1

LIST OF PARTICIPANTS OF COMMUNITY CONSULTATION IN 34 VILLAGES

Village: Chuchang

Dated: <u>26/6/2012</u>

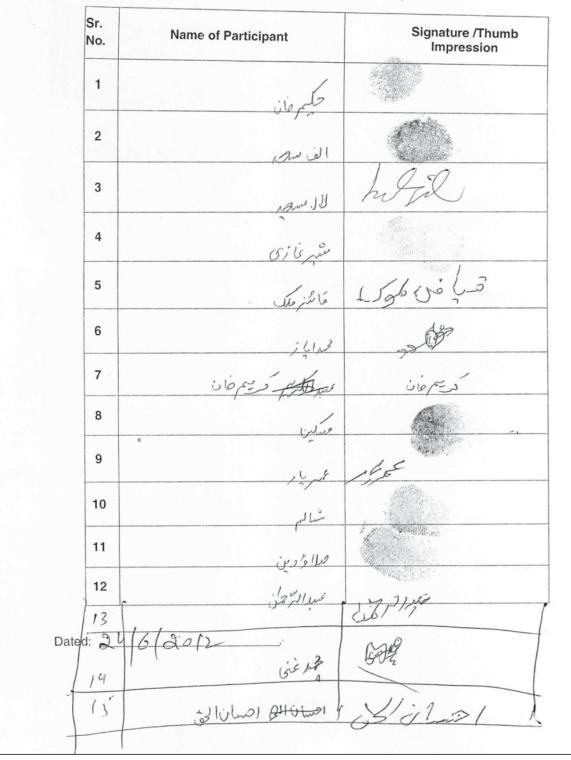
Sr. No.	Name of Participant
1.	Qari Aziz-ur-Rehman
2.	Sher Khan
3.	Javaid
4.	Zareen
5.	Hazb-ur-Rehman
6.	Badar Jamil
7.	Haroon
8.	Abdul Sattar
9.	Ajoon Khan
10.	Kimya
11.	Shabbir Khan
12.	Munir Ahmad

(Consultation & Participation)

Village: Khoshi

Dated: <u>24/6/2012</u>

Sr. No.	Name of Participant
1.	Hakim Khan
2.	Alaf Saeed
3.	Lal Saeed
4.	Sher Ghazi
5.	Faiz Malik
6.	Muhammad Ayaz
7.	Kareem Khan
8.	Maskeen
9.	Umar Yar
10.	Shalim
11.	Sala-ud-din
12.	Abdul Rehman
13.	Muhammad Ghani
14.	Ahsan-ul-Haq
15.	Fazal-ur-Rehman
16.	Habib-ur-Rehman
17.	Muhammad Ghani
18.	Hijab Khan
19.	Noor-ur-Rehman
20.	Sher Muhammad
21.	Gul Zareen
22.	Pir Wali Shah
23.	Moasum Khan
24.	Fazal Momin


Khashi 24/6/2012

Allen.

R

Dassu Hydropower Project

(Consultation & Participation)

pliended 25 (1.50)

Anoshi ville

Dassu Hydropower Project (Consultation & Participation) Sr. Signature /Thumb Impression Name of Participant No. 16 #7 8 18 19 10 20 2\$ 22 28 0 24 215 0 11 12

Dated: 24/6/2012

4

(Consultation & Participation)

Village: Logro

Dated: <u>23/6/2012</u>

Sr. No.	Name of Participant
1.	Narang Shah
2.	Shamas-ud-Din
3.	Syed Wali Khan
4.	Gul Badshah
5.	Abdul Salam
6.	Gul Akbar
7.	Abdul Malak
8.	Gul Sher
9.	Shamas-ur-Rehman
10.	Noor Muhammad
11.	Khan Gheer
12.	Muhammad Ameen
13.	Ahmad Ali
14.	Sheraan
15.	Sarfraz Khan
16.	Rashmil Khan
17.	Masar Khan
18.	Mustafa
19.	Zaror
20.	Ameez Khan
21.	Wali-ur-Rehman
22.	Rehmat Wali
23.	Syed-ur-Rehman
24.	Hazrat Wali

1t. HH Covered 27

Loglo uillen

Signature /Thumb Impression Sr. Name of Participant No. ن زندن o ن *رو* 1 9, đ 2 3 1)019 000 گه بازندان 4 , l 5 عبرال 6 U611 7 مر المان 8 لجان 9 10 , !,5 11 12 Dated: 23/6/20/2 4

(Consultation & Participation)

v 0 --

Dassu Hydropower Project

(Consultation & Participation)

Sr. No.	Name of Participant	Signature /Thumb Impression
13	: (12,21	100 h
e 14	jp.	686
815	jp]	
46	رشفل ظرن	
,5 17	فرح فال	
618	11	616
#19	<i>(9)</i>	
8:20	المرطل	ا سينز کان
153		ولى (لرحان
10	(25 ER)	ولى (لرحان دلات ول
23	:12/1m	میرالر خان جزن ولی
24	19 Z ja	حرب ولی

4

(Consultation & Participation)

Village: Kai Gah

Dated:

Sr. No.	Name of Participant
1.	Haider Shah
2.	Qari Maaz Hussain
3.	Fazal Malak
4.	Malik Falqoos
5.	Hakeem Khan
6.	Kismat Shah
7.	Habib-ur-Rehman
8.	Abdul Rehman
9.	Fazal Wahab
10.	Abdul Rehman
11.	Sahibzada
12.	Ameerzada
13.	Shah Akbar
14.	Fazal-ur-Rehman
15.	Abdul Rauf

Sr No.	List of Participants	Signature /Thumb Impression
1	حنرر کاه	A! us
2	تمار) معاد حسن	میں میں اور میں
3	متعل مانعًا	Alt David
4	مين ملعة س	Mr D
5	06-0-	Anno -
6	olin	ot ins
7	مبر الر <u>مان</u>	- Consulta
.8	برالروان	\$23.

Kan Grah millege

P.T.O

Signature:	Signature:
Name: •	Name:
CNIC:	CNIC:
(Interviewer)	(WAPDA Representative)

جراب مقروعاب م Afetma تفترلك

(Consultation & Participation)

Village: Pani Bah

Dated: <u>12/6/2012</u>

Sr. No.	Name of Participant
1.	Molvi Abdul Kareem
2.	Bakhat Tajamul
3.	Noor Badshah
4.	Ali Haider
5.	Juma Syed
6.	Mir Subhan
7.	Haji Syed Imran
8.	Habib Noor
9.	Raj Gul
10.	Gul Nawaz
11.	Bradar
12.	Fazal Noor

Consultation & participation $\mathcal{B} \wedge \mathcal{A}$ are List of Participants List of Participants Signature /Thumb Impression Sr No. 1 2 3 ð 1 4 de 5 6 7 8 1 8 9 10 11

Dated: 12-6-2012

12

S-15

(Consultation & Participation)

Village: Gadeer

Dated: <u>09/6/2012</u>

Sr. No.	Name of Participant
1.	Fazal Shah
2.	Hidayat-ur-Rehman
3.	Haji Naamdad

Gradeer willege 9-6-2012 ľ den, ا_مفرته ع محرور

د- مردست السرحن 2- مارسی مردست 3- ماجی ناممداد

(Consultation & Participation)

Village: Kass Village

Dated: <u>27/6/2012</u>

Sr. No.	Name of Participant
1.	Muhammad Mukhtar
2.	Ghulam Muhammad
3.	Muhammad Iqbal
4.	Usbama Ghani
5.	Muhammad Saeed
6.	Said Khan
7.	Abdul Rasheed
8.	Abdul Majeed
9.	Fazal Kareem

(43) Kogs willing

(Consultation & Participation)

Sr. No.	Name of Participant	Signature /Thumb Impression
1	فر نستار بنه به	MAT
2	23 puis	Bark
3	ولشاريك	AM
4	(is with	AR
5	Man 23	AND
6	UG M	
7	عبر الرسير	Werld
8	ustive	1 Andrew Contraction
9	" Starter and the second	نغل ترميم
10	1	
11		
12		

[.] 4

Dated: 27/6/2012

(Consultation & Participation)

Village: Kango

Dated: <u>24/6/2012</u>

Sr. No.	Name of Participant
1.	Gul Zareen
2.	Guldad
3.	Abdul Malak
4.	Sartaj
5.	Gul Rehman
6.	Gul Munir
7.	Sahibzada
8.	Abdul Ghafoor
9.	Muhammad Aslam
10.	Mehmood-ul-Hassan

Kongortiller

(Consultation & Participation)

Sr. No.	Name of Participant	Signature /Thumb Impression
1	عل زرس	Le's In
2	25 00	njak
3	What have	Jun du
4	Ċí,	2. 4
5	ملي حمان	fut_ul.
6	Juny -	- José
7	ما مزاره	ماعيزاح
8	عسبر الفقور	معمرالعقرار
9	فحمراسهم	<u>a</u>
10	فهردالحر	Referrance.
11	-	
12		

4

Dated: 24/6/2012

(Consultation & Participation)

Village: Seo

Dated: <u>24/6/2012</u>

Sr. No.	Name of Participant
1.	Muhammad Akram Shah
2.	Ameez Khan
3.	Muhammad Tariq Shah
4.	Malik Tota Khan
5.	Rakho
6.	Shah Rehman
7.	Musharaf Khan
8.	Muhammad Yaseen
9.	Anees-ur-Rehman
10.	Muhammad Siraj
11.	Atta Ullah
12.	Roshan
13.	Abdul Rehman

Jeo Willye

Dassu Hydropower Project

Sr. Signature /Thumb Impression Name of Participant No. 6 (1 11 افسر ک Ù 2 OC GABAS 3 06600000 6660 5 4 6 2 5 18, ×Lin 6 7 8 9 10 11 40 12 13 Ullor Dated: 24 2012 6 4

(Consultation & Participation)

(Consultation & Participation)

Village: Chalas

Dated: <u>29/6/2012</u>

Sr. No.	Name of Participant
1.	Fazal Elahi
2.	Ahmad Khan
3.	Syed Ahmad
4.	Saeed-ur-Rehman
5.	Saeed-u-Zaman
6.	Bashir
7.	Yaseer Khan
8.	Saleh Muhammad
9.	Bashir

chalass willege,

Dassu Hydropower Project

(Consultation & Participation)

r. o.	Name of Participant	Signature /Thumb Impression
1	مفل التي	
2	احمر بيان	احمدخان
3	me 1920	171 per
4	معيد البرحن	سعرالترحن
5	مير الرحان	تسير الزمان
6	ب خ ب ر	بستبر
7	يتشيكان	يميرخان
8	جمائح فحمر	· · · · ·
9	•	بسننس
10		
11		
12		

4

Dated: 29/6/2012

(Consultation & Participation)

Village: Lootar

Dated: <u>21/6/2012</u>

Sr. No.	Name of Participant
1.	Abdul Razaq
2.	Hakumat Khan
3.	Sher Muhammad
4.	Abdul Qayyum
5.	Imran Khan
6.	Kamran Akmal
7.	Ali Muhammad
8.	Abdul Rauf
9.	Sheraan
10.	Zer Mian
11.	Shahzada
12.	Haq Sher
13.	Nazar Khan
14.	Abdul Qadar

Louten villge 24H.

Dassu Hydropower Project (Consultation & Participation)

(Consultation & Participation)

Village: Shori Nalla

Dated: <u>19/6/2012</u>

Sr. No.	Name of Participant
1.	Abdul Wajid
2.	Abdul Sadiq
3.	Shakoor Khan
4.	Talawat Khan
5.	Gul Syed
6.	Wasal Khan
7.	Farid Khan
8.	Yaseen
9.	Hussain Wali
10.	Haji Alam
11.	Jahangir Khan
12.	Sanobar Khan
13.	Aurang Zeb
14.	Anayat Ullah
15.	Sher Khan

Shori Nallo

(Consultation & Participation)

Sr. No.	Name of Participant	Signature /Thumb Impression
1	سرالواجرع	حبور افر
2	عسر الصارى	كبوالهارق
3	06,00	ひらんで
4	تلارشان	002-90=
5	v Je	المركب للمركب
6	واصلي خان	وعل فان
7	فرمر ف ن	ضرب بشكن
8	· · · · ·	c júli
9	· () · · · · · · · · · · · · · · · · · ·	14,000
10	66,26	por le 3.la
11	مرانكير خان	Ē
12	مىتوبىر خان	عمرة بر خان
ted:/	9/6/2012	191
, 13	م فنات الله	ونا الشرار
- 14	مشرطان	065.

(Consultation & Participation)

Village: <u>Summar Nallah</u>

Dated: <u>15/6/2012</u>

Sr. No.	Name of Participant
1.	Wali Rehmat
2.	Liaqat Wali
3.	Saar Jamil
4.	Abdul Wahid
5.	Ghulam Muhammad
6.	Shaqar Khan
7.	Rehmat Ullah
8.	Sabir Wali
9.	Muhammad Younus
10.	Habib Khan
11.	Lal Sajjad
12.	Abdul Wazir
13.	Hussain Wali
14.	Muhammad Jamil

Consultation & participation

Summar List of Participants Signature /Thumb Impression Sr No. 1 wali Rehmat 9 2 9 at wali 3 Saar T 4 C 5 2 PMi 6 7 Jah 8 in wal 9 Young 10 Hab IB Khan 11 12 Di 14 Hussan 12 000 15 Multamn Dated: 15/6/2012 2m S-15

(Consultation & Participation)

Village: Lachi Nalla

Dated: <u>18/6/2012</u>

Sr. No.	Name of Participant
1.	Muhammad Yahya
2.	Alam Gireer
3.	Shah Alam
4.	Manzoor Ahmad
5.	Gul Faraz
6.	Shah Nawaz
7.	Haji Zaboor

Tital Harphild 12 Lashi Nallo

Dassu Hydropower Project (Consultation & Participation)

Sr. Signature /Thumb Name of Participant No. Impression Muhammed L. 1 an Gilseer 2 Shah Ala 3 4 Non word 5 6 7 UN 8 9 10 11 12

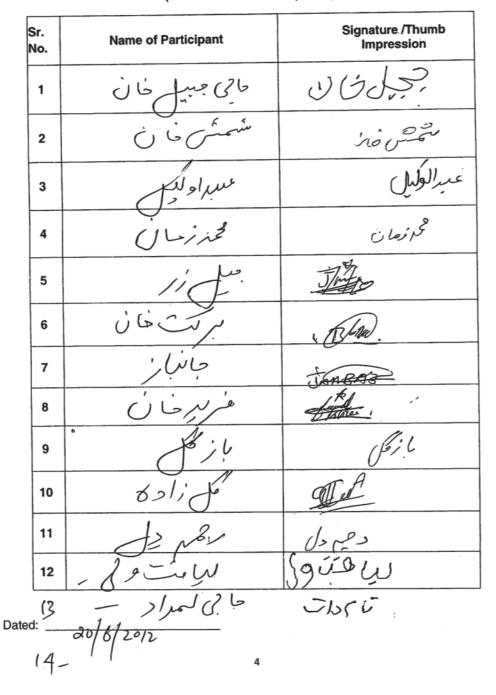
Dated: _10/6/2012

4

(Consultation & Participation)

Village: Shatial (Shaheen Kot)

Dated: <u>20/6/2012</u>


Sr. No.	Name of Participant
1.	Haji Jajil Khan
2.	Shamas Khan
3.	Abdul Wakeel
4.	Muhammad Zaman
5.	Jal Zer
6.	Barkat Khan
7.	Janbaz
8.	Farid Khan
9.	Baz Gul
10.	Gulzada
11.	Reham Dil
12.	Liaqat Wali
13.	Haji Naamdad
14.	Ashoor Mehmood
15.	Sahib Zer
16.	Khoma
17.	Haji Narna Khan
18.	Kareem Ullah
19.	Abdulllah
20.	Shabbir
21.	Rajab Khan
22.	Gul Zer
23.	Sher Ahmad
24.	Dil Muhammad
25.	Gulber

••

شايين ذلط flū

Dassu Hydropower Project

(Consultation & Participation)

شيال شين وط

Dassu Hydropower Project

(Consultation & Participation)

Sr. No.	Name of Participant	Signature /Thumb Impression
15	ا شرار محود	0998-503363
No	ما می ز	i, un propose
19	Ó	حومما
18	نالبرنسان	هجى نرناخان
19	المرجم المتر	تركم الله
20	had 1 -	Lun
21	1.	
22	212)	روببخان
9 3°	110	1700
24	لي الم	31
25	it do	دل ع
18	محل بم	المن الم

Ł

Dated: <u>20/6/.20/2</u>

(Consultation & Participation)

Village: Harpin Nallah

Dated: <u>13/6/2012</u>

Sr. No.	Name of Participant
1.	Fardoos
2.	Amam Ali
3.	Younas
4.	Shakeel
5.	Umar Farooq
6.	Sher Alam
7.	Mumtaz
8.	Naqeeb
9.	Rehman
10.	Abdul Bari
11.	Nadir
12.	Shah Alam

Dasu Hydropower Project arpin Nall **Consultation & participation** nts Signature /Thumb Impression List of Participants Sr No. 1 ترووس deos 2 59 Ali 61 nam 3 4 CI 5 Faring 6 U Shar 7 8 inel 9 M. Bari 10 5/4/ 11 Vadu 12 an Soli 4

Dated: 13 / 8/20/2

S-15

(Consultation & Participation)

Village: Seglo

Dated: <u>11/6/2012</u>

Sr. No.	Name of Participant
1.	Muhammad Younas
2.	Shamas-ur-Rehman
3.	Muzamil
4.	Subdar
5.	Shah Nawaz
6.	Sana Ullah

	Participants Seelo	
Sr No.	List of Participants	Signature /Thumb Impression
1	Michammed Yousaf	Lus
2	Shamas ur Rehman	Rent
3	Muzamil	M.J.khani
4	Subday	المع بسرار
5	shah waway	8.14
6	shah waway Sang ullah	Sangullan
7		Sangullan
8		
9		
10	8	
11		
2		

Dated: 11-6-2011

.

S-15

.

(Consultation & Participation)

Village: <u>Sazeen Camp (left bank)</u>

Dated: <u>14/6/2012</u>

Sr. No.	Name of Participant	
1.	Sher Afzal	
2.	Muhammad Mustaqeem	
3.	Khan Afzal	
4.	Muhammad Maskeen	
5.	Shah Alam	

	Dasu nyaropowe								
cen	Camp Consultation & pa	nticipation Dated 14/6/12							
Lef Bank									
Sr No.	List of Participants	Signature /Thumb Impression							
1	Shin Afzal	(STD ins 2							
2	Muhammerel Mushay	ken hie							
3	Khan Afzal	RA- N							
4	Muhammed Misken	in the second							
5	Shah Alam	(D) D							
6	•								
7									
8									
9									
10	6								
11									
12									
	Sr No. 1 2 3 4 5 5 6 7 7 8 9 9 10	Sr List of Participants No. 1 Shin Afzal 2 Michannered Mitthey 3 Khan Afzal 4 Michannered Mitthey 5 Shah Alam 6 9 10 °							

Dated: 12-6-2012

S-15

(Consultation & Participation)

Village: Melar

Dated: <u>02/6/2012</u>

Sr. No.	Name of Participant
1.	Badar Munir
2.	Gulab Khan
3.	Shah Zada
4.	Ameez Khan
5.	Umar Khan
6.	Qaiser
7.	Musharraf Khan
8.	Amir Khan
9.	Hanseer Khan
10.	Shamas-ur-Rehman
11.	Bashir Ahmed
12.	Fazal Haq

Dassu Hydropower Project Melar (Consultation & Participation) Sr. Signature /Thumb Name of Participant No. Impression 1 Baday Munie 2 gulab Khan 0;10 3 h Lada 4 20/ meet Khan 5 Khan Imer 6 lo auses 7 Khan assa 8 Khan mu 9 anseel K han 10 Sun 8 مولو ب 11 Hime A 12 a 0

4

Dated:

(Consultation & Participation)

Village: Kai Dogah

Dated: 03/6/2012

Sr. No.	Name of Participant
1.	Jan Muhammad
2.	Muhammad Alam
3.	Muhammad Munir
4.	Muhammad Azam

			Kai Dogo
			V
Sr No.	List of Participants	Signature /Thumb Ir	mpression
1	Four Muhammad	- Aud Bart	-
2	M. Alam	the 3	
3	M. Muneer	فحمر نير	
4	M. A zam	جر المفلى	
5			
6	•	-	
7			
8			

Signature: <u>Forza</u> Name: CNIC:

ŕ

(Interviewer)

Signature: Name: Ah 345-2 CNIC: 2468

(WAPDA Representative)

Dated: _ 08-06

(* Note: Please attach necessary photograph)

S-15

(Consultation & Participation)

Village: Kuzkai

Dated:

Sr. No.	Name of Participant
1.	Haji Fazal Rehman
2.	Gul Daat

Kuz Kai Location of Muetig Name of village: en Date 3/ Dara al Reh fatter ; ra Signature None Hoji Fayal Rebman; Sham Toor Gul Dat: Malih , Ha him Khe

(Consultation & Participation)

Village: Seer Gayal

Dated: 04/6/2012

Sr. No.	Name of Participant
1.	Molvi Abdul Malak
2.	Abdul Quddus
3.	Muhammad Raheem
4.	Abdul Sattar
5.	Fazal Ahad
6.	Aneer Khan
7.	Syed Ahmad
8.	Molvi Hussain Ahmad

Lev Gayal

Dassu Hydropower Project (Consultation & Participation)

Sr. No.	Name of Participant	Signature /Thumb Impression
1	مولى مبر (لات	Alle
2	مولون مبر (لات) مسر العروس	Duche
3	En No	Palis
4	, Culme	Maur
5	ففتل احر	\$
6	j\$	- Er
7	follow	BIN
8	حولى حسين الحمر	Re
9		
10		
11		
12		

4

Dated: 4/6/2012

(Consultation & Participation)

Village: Kot Gul

Dated: 05/6/2012

Sr. No.	Name of Participant
1.	Mir Subhan
2.	Ahmad Jan
3.	Rasheed
4.	Shair Ali
5.	Abdul Malik
6.	Alif Deen
7.	Gul Zaman
8.	Abdul Waheed
9.	Ashraf
10.	Haji Shafi
11.	Ghulab Khan

5-8-2012 Kot Gal. - Min Sulkan sto Hayi Sofi 1- Mir Sulman 2- Ahmed Jon 510 Haji Jafas 3- Rasheed 510 Gulah Khang Al: sin Gul Dad Jopm' 5- Alidel Malike SIS Gul Dod 6. Alif Deen Sio Jamdan "2 7- Cul Zaman S/s Culah Khan" 8- Alid ul Waleced S/s Culah Khan M. Alshiraf S/o Umar Khan 10 Hoyi Sharfi S/O Karim MM 1) Cohulab Khan Slo Ray

(Consultation & Participation)

Village: Nut Bel, Kandia

Dated: 06/6/2012

Sr. No.	Name of Participant
1.	Abdul Waris
2.	Haji Khan Bahadar
3.	Abdul Sattar
4.	Javaid Iqbal
5.	Qalandar
6.	Ihsan-ul-Haq
7.	Hukamdad
8.	Inayat Ullah
9.	Haq Nawaz
10.	Muhammad Taj
11.	Mazhar Shah
12.	Sher Muhammad
13.	Raj Muhammad

Sr No.	List of Participants	Signature /Thumb	Impression
1	Abdal waris	Ret	
2	Hoji Kha Bchadas	13	
3	Abdul Satter		
4	Javid 196al	Æ	
5	Qalandor		
6	Ihsan-al-Hag	ان الحرّي	
7	Hukamolad	212	الكام
8	Inayat-ullah	pin	
	Hay Naway :	Anicelle	
(0.]]··	Waytier Shall Divis 11 10		Dated: 6-6-20
	ة ature:	Signature:	
Nam	e;	Name:	
CNIC	D:	CNIC:	
	(Interviewer)	(WAPDA Repr	resentative)
, Signa Nam	ature:	Name: CNIC:	

Nut Bel, Kandia Valle y, Tahsil, Dasu

Dated:	66.	66.	2012		
(* Note:	Please atta	ch neces	sary photog	raph)	
12.	She	Min	ham	ad	
13 .	Roj	Ma-	ham	merel	

S-15

(Consultation & Participation)

Village: Saleech

Dated: 06/6/2012

Sr. No.	Name of Participant
1.	Qadir Khan
2.	Faridoon
3.	Haji peer Dad
4.	Mir Zeeshan
5.	Abdul Gafoor Malook
6.	Saeed Gul
7.	Azeem
8.	Waqar
9.	Shamsher
10.	Sattar
11.	Chapu
12.	Saeed Jan

Saleech village, Initial Consultation 6/6/12 Name 1) Radinkhen 2) Faridoon 3) Hoje peer Dad 4) Alir Zeeshon 5) Abdul Gafor Malcola 6) Social Gul 7) Azcen 8) waquel a) sharmsher io) sattan 11) Chapme 12) Saced Jan ile

(Consultation & Participation)

Village: Thothi

Dated:

Sr. No.	Name of Participant
1.	Abdul Majeed
2.	Sabeel
3.	Ayub Khan
4.	Farid Khan
5.	Zaid Khan
6.	Ghofran Khan
7.	Abdul Rasheed
8.	Syed Baz
9.	Lal Muhammad
10.	Gul Malook
11.	Muhammad Nazir
12.	Jahangir
13.	Yar Khan
14.	Dedar Shah
15.	Mushtahir
16.	Amal Dar

WARE A Apperation Thotil 5 1 1 - 1 his", O Guesding 0609,1 13 6-11-3 4 مربع خان 5 - زیر خان 6 - غزران کان 5-1- 201-7 7.6 11 5 13 JU 19 11 - 16 20

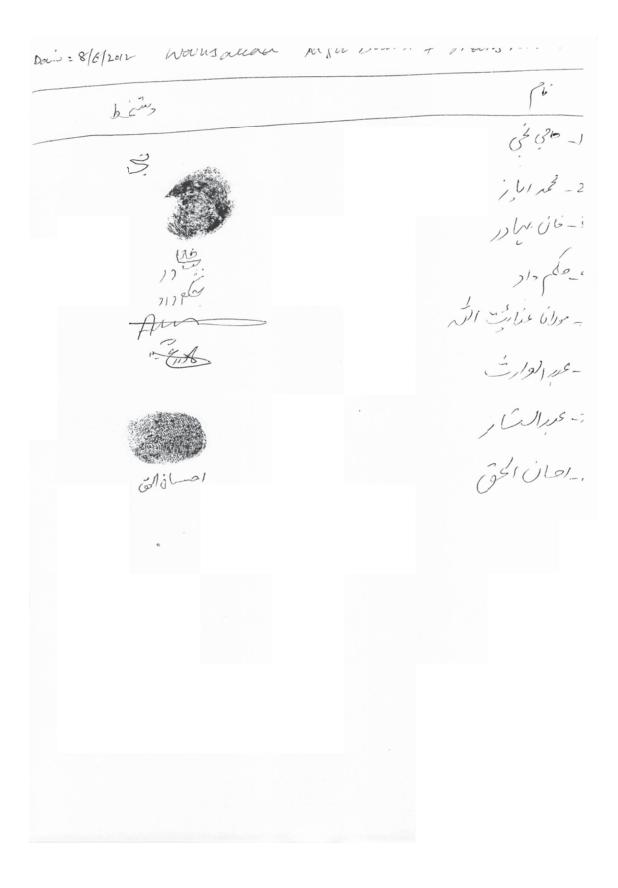
Thothi.

Signature /Thumb Impression List of Participants Sr No. 11 M. Norziz Ζ 3 honoger Jan 13 いうれ Yar Khan Dedas shak Ċ, Mashtahir ťÔ Amal Daz Έ 17 C Z . 8

Signature: Signature: ASa Name: Name: 38404-5907918. CNIC: CNIC: (WAPDA Representative) (Interviewer) Dated:

(* Note: Please attach necessary photograph)

S-15


Dasu Hydropower Project

(Consultation & Participation)

Village: Warisabad

Dated: 08/6/2012

Sr. No.	Name of Participant
1.	Haji Naji
2.	Muhammad Ayaz
3.	Khan Bahadur
4.	Hukam Dad
5.	Mulana Anayat Ullah
6.	Abdul Waris
7.	Abdul Sattar
8.	Ahsan-ul-Haq

(Consultation & Participation)

Village: Doondar

Dated: <u>25/6/2012</u>

Sr. No.	Name of Participant
1.	Roshan Khan
2.	Abdul Razzaq
3.	Jamal Khan
4.	Ghaffar Khan
5.	Ibrahim
6.	Qayyum
7.	Dedar Shah
8.	Nagir Shah
9.	Nabi Haq
10.	Abdul Haq
11.	Sahiba Haq
12.	Gul Bani

Doondar unage

Dassu Hydropower Project

(Consultation & Participation)

ir. Io.	Name of Participant	Signature /Thumb Impression
1	روشن کان	Contraction of the second seco
2	GilyIns	
3	بحال کا ل	
4	ينفار فان	
5	E !!!!!	
	J.S.	
	دردر شای	
	8 C di a	
	GOG-	
0	عبرالعن	
1	ما البرحق	
2	(Secto	

4

Dated: 25/6/2012

(Consultation & Participation)

Village: Gummo

Dated: <u>17/6/2012</u>

Sr. No.	Name of Participant
1.	Jamu Gul
2.	Muhammad Rafiq
3.	Abdul Rasheed
4.	Umer Farooq
5.	Said Jabar
6.	Said Rehman
7.	Fazal-ur-Rehman
8.	Abdul Sattar
9.	Muhammad Ayub

Consultation & participation				
1	articipants.			
		Signature /Thumb Impression		
Sr	List of Participants	Signature / mumb impression		
No.				
	Jame Gul			
2	M. Rafig	PCP		
3	Abdal Rasheed	÷ ·		
4	Ulmer Faroog	AZ		
5	Saud Jahar			
6	Said Rehman			
7	fazal-ur-Rahman			
8	Abdul Satton			
Ø	Muhammad Agub	محرالي		
10	ŝ			
11				
12				

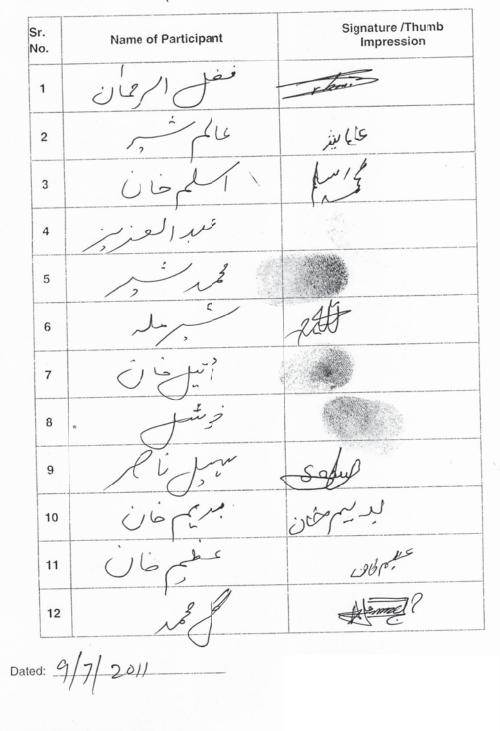
Consultation & participation

Dated: 19-6-2012

1

S-15

(Consultation & Participation)


Village: Seer Shayal

Dated: 09/7/2011

Sr. No.	Name of Participant
1.	Fazal-ur-Rehman
2.	Alam Sher
3.	Aslam Khan
4.	Abdul Aziz
5.	Muhammad Sher
6.	Sher Mulah
7.	Ateel Khan
8.	Khoshal
9.	Sohail Nasir
10.	Badeem Khan
11.	Azeem Khan
12.	Gul Muhammad

(Consultation & Participation)

(Consultation & Participation)

Village: Khaliqabad Darel Pull

Dated: <u>12/6/2012</u>

Sr. No.	Name of Participant
1.	Abdul Wajad
2.	Ubaid-ur-Rehman
3.	Fazal-ur-Rehman
4.	Soon Mian
5.	Nazeer
6.	Roozimand
7.	Hijab

Khaligabed David Pull

Sr	List of Participants	Signature /Thumb Impression
No.		
1	Abdul wajad Ubaid-ur-Rehman	Allert
2	Ubaid-ur-Rehman	Ab
3	Fogal ul Rehna	E.
4	Joon Mian	سون في ٢
5	Nazees	Owm
6	Roozi mand	Rezar
7	Hyab	- (,
8		
9		
10	•	
11		
12		

Dated: 12-6-2012

.

S-15

NOTABLE MEMBERS OF THE COMMITTEE

To

The Executive Engineer, WAPDA, Dassu Hydropower Project, At Dassu.

Dated 19/03/2012.	
//	

Kenived Dosa 30-3-2012

Subject: LIST OF NOTABLES OF THE GRAND JIRGA IN RESPECT FOR DASSU HYDROPOWER PROJECT IN RESPECT OF TEHSIL DASSU AND KANDIA. Memo:

The following committee of Tehsil Dassu and Kanida comprising of the following notables is hereby constituted for Grand Jirga regarding WAPDA (Dassu Hydropower Project) issues:-

	S.No.	Name & Father	R/O
	1.	MNA, NA-23 Kohistan.	
	2.	MPA, PF-63	
	3.	Malik Sumandar.	Jalkot.
	4.	Haji Anwar.	Jalkot.
	5.	Muhammad Hassan s/o Safa	Jalkot.
	6.	Malik Charagh.	Dassu.
	7.	Malik Sakhi.	Dassu.
	8.	Haji Yarmanon s/o Chano	Teyal.
	9.	Malik Mukhtar s/o Malik Shahcad.	Seo.
	10.	Manawar Shah. (Sikandar Khel).	Dassu
	11	Molve Abdul Hakeem S/O Afsar Khan	Uchar Dassu
	12	Molve Roshan S/O Lala	Koshi Dassu
	13	Haji Manan Shah	Kaigha Dassu
	14	Filgoos S/O Qalander	Kaigha Dassu
	15	Si:ajuddin S/O Hussan Wali	Gadeer (Awai)Dassu
	16	Zarbeland Khan Ex- Nazim Kun Jalkot	Rajkot Dassu
	17	Oari mUhammad Saeed Ciost of Both Khel	Dassu
	18	Narang Shah	Dassu
	19	Fareed S/O Ayub	Summer Nallha
	20	Raja Muhd: Arifs/o Sadar Khan	Sazain
	21.	Moulvie Abdul Ghafoor.	Khatib Jamia Majid Shatial.
	22.	Moulvi Saeed ur Rehman	Khatib Zilla Kohistan.
	23.	Moulvie Noor Nabi.	Jalkot.
	24.	Muhammad Ajmal s/o Hatiz Jamil	Jalkot.
	25.	Malik Umar Khan Ex-MPA.	Seo.
	26.	Malik Aman Ullah s/o Malik Ayub.	Gogyshy.
	27.	Abdul Haleem	Seglo.
	28.	Khan Bahadar s/o Bolia.	Kuma.
,	29.	Abdul-Rehman s/o Fazal Ahmad.	Kama.
:6	- 30.	Malik Gulab S/o Yousaf	Seo Milar.
	31.	Umar Khan s/o Abdullah Khan.	Seo Milar.
	32.	Malik Qadam Khan s/o Nawab.	Kuz Purwa.
	33.	Haji Fazal ur Rehman s/o Shamto	Kai Kuz Purwa.
	34.	Bakht Beland s/o Malik Hakeem Khan	Ex-U/C Nazim Seo.
	35.	Abdul Malik s/o Moulvie Ghulam Essa.	Seri Gayal.
	36.	Sved Rshid s/o Said Fageer	Seri Gayal.
	37.	Moulvi Bahadar Shah s/o Moulvie Jandar.	Thoti.
	38.	Malak Samdar s/o Haji Aftab.	Kandia.
	39.	Haji Afrin s/o Abdul Shakoor.	Thoti.
	40.	Mir Hazar s/o Jafar	Kot Gal
	41.	Haji Bara Khan	Kandia.
	42.	Moulvi Abdul Waris.	Kandia.

The following notables have political influence in the tehsils.

i. Malik Syed Ameer of Dassu.

iii. Malik Siraj of Seo.

v. Malik Haider of Kandia.

vii. Ghulam Said Ex-U/C Nazim.

ii. Malik Noor Wali Shah of Dassu. iv. Malik Manwar Shah of Jalkot. vi. Malik Rahim Din Kandia.

W Assistant Coordination Officer Kohistan.

EXECUTIVE COMMITTEE OF AFFECTEES OF DASU

No.	Name	No.	Name	
1	Haji Umar Khan Seo	15	Maulvoi Abdul Hakeem	
2	Malik Mukhtar	16	Maulvi Iqbal Shah	
3	Malik Qadam Khan	17	Raheem Ullah	
4	Malik Umar Khan	18	Filqoos Khan	
5	Gulab Khan	19	Haji Ghulam Saed	
6	Haji Fazal-ur-Rehman	20	Qadir Khan	
7	Muhammad Raheem	21	Malik Manan shah	
8	Gul Mar Khan	22	Saed Jameel	
9	Aman Ullah	23	Maulvi Shamsher Ali	
10	Haji Sammundar	24	Adbul Jabbar Khan	
11	Haji Afreen	25	Halal Khan	
12	Mir Hazaar Bajarani	26	Bajal Khan	
13	Bakhaa Malik	27	Saoon Mian	
14	Umar Khan Kot Gal	Т	The names in Urdu are attached below	

the second		
1 28	03135583388	- Ja 6. 5 7 6 6 -
		2- ملك مرتختيار
		(Ex-MPA) مكان (Ex-MPA)
- AND		4. مك عرفان (Ex-MPA)
Stan 11	03459581110	5۔ گاپخان
Jer" fee		6- حاجى فضل الرجمان
N. Kan	03005644703	7- جمروسيم
		8۔ گل مرتبان
	5 a - 6	9_ المان الله
un die	38 ¹³	10- حاجى سندر
<u>())</u>		-1- حاجى افرين
A		12 - مير ہزار بجارانی
Bapel Si		-13 بنجاملک
		14 - عمر بنان کون گل
ولرى مركم	27 g	15 - مولوی میدائکیم
0	E.	16 - مولوی اقبال شاہ
- Labore	100	17- رشيم الله
North Wigh	65	18 - فلقوس خالن
	2	19- حالي غلام سيد
10000		20_ تادرخان
(and	19 W	21- ملك منان شاه
		22- سيرجيل
155-513		23- مولزی ششیرعلی
0-500 030	2-	24- عبدالجبارخان
Heldocher		25- بلال نان
بجل ما ل		26- تتجل خان
ULOUP :		27- سون ميان
. , 0/3		v
1		

List of Committee Members in Urdu

PARTICIPANTS OF JIRGA IN MARCH 2012 AND IN SEPTEMBER 2012

List of Participants of Jirga (2nd March)

Officials and Consultants at Jirga held on 2nd March 2012

Sr. No.	Name	Designation	Department / Organization
1.	Qazi Abdul Rahman	ACO	District Management
2.	Haji Muhammad Farooq	PD	WAPDA
3.	Muhammad Akram	Xen	WAPDA
4.	Dr. Sultan	Chief Environment Expert	DHC
5.	Shahid Goheer	Social and Resettlement Expert	DHC
6.	Zafar Ch.	Environment Expert	DHC
7.	Dr. Ramzan Ch.	Resettlement Expert	DHC
8.	Anwar Fazal Ahmad	Sociologist	DHC
9.	Muhammad Noman	GIS Expert	DHC

List of Participants at Jirga held on 2nd March 2012

Sr. No.	Name	Village	Sr. No.	Name	Village
1.	Ashraf Ali	Seo	2.	Kaftan	Kaigah
3.	Ahmad Khan	Doga Largani	4.	Fazal	Kaigah
5.	Soan Mian	Barseen	6.	Gul Meer Khan	Gial Sari
7.	Fazal ul Rahman	Doga	8.	Ismail	Dasu
9.	Bilal Khan	Doga Largani	10.	Abdullah Khan	Jal Kot
11.	Amiz Khan	Logro	12.	Muhammad Hassan	Jal Kot
13.	Gul Mian	Uchar Nallah	14.	Ghulam Said	Dasu
15.	Noor Wali	Uchar Nallah	16.	Abdul Sallam	Chochang
17.	Rat Mian	Doga Largani	18.	M. Umar Hanif	Dasu
19.	Shair Zada	Doga Largani	20.	Abdul Rahman	Lotar
21.	Ghulam Haider	Doga Largani	22.	Ahsam u Deen	Barseen
23.	Gahan Zaib	Seo	24.	Umat Rasool	Dogah
25.	Zaid Muhammad	Seo	26.	Muhammad Nabi	Mliar Dogah
27.	Rahmat Wali	Logro	28.	Ghulab Shah	Dasu
29.	Zahoor ul Haq	Uchar Nallah	30.	Afsar Khan	Khoshi
31.	Fazal ul Allah	Dasu	32.	Gahangeer	Logro
33.	Narang Shah	Logro	34.	Gulab Khan	Bar Parwa Dogah
35.	Wali Ullah	Dasu	36.	Khanger	Logro
37.	Shair Zaman	Logro	38.	Mer Hazar Khan	Kot gul
39.	Muhammad Zahir Shah	Logro	40.	Mer Subhan	Kot gul
41.	Abdul Qadir	Dasu	42.	Saider Khan	Looter

Sr. No.	Name	Village	Sr. No.	Name	Village
43.	Shahzada	Dasu	44.	Zar Bayan	Looter
45.	Abdul Aziz	Dasu	46.	Gul Akbar	Looter
47.	Gul Phurr	Lotar	48.	Iskander	Looter
49.	Abdul Raoof	Lotar	50.	Waliyat	Pani Bah
51.	Sheran	Lotar	52.	Mir Subhan	Pani Bah
53.	Gul Mian	Lotar	54.	Niaz Khan	Khushi Lugro
55.	Dadan Khan	Lotar	56.	Sabr Khan	Khushi Lugro
57.	Sultan	Lotar	58.	Sher Ghazi	Khushi
59.	Abdul Sitar	Kaigah	60.	Umer Yaar	Khushi
61.	Mohammad Anwar	Pani Bah	62.	Afsar Khan	Khushi
63.	Sher Mohammad	Looter Nullah	64.	Miskeen	Khushi
65.	Malik Umer Khan	Seo	66.	Mansoor	Khushi
67.	Maulvi Bahadur Shah	Seo	68.	Abdurehman	Khushi
69.	Sar baz	Seo	70.	Kareem Khan	Khushi
71.	Shahjahan	Seo	72.	Sher Rehman	Seo
73.	Manzil Shah	Seo	74.	Khursheed	Khushi
75.	Summer Khan	Khushi	76.	Mumtaz Khan	Khushi
77.	Hukam Khan	Looter	78.	Malik Sakhee	Dasu
79.	Haq Sher	Looter	80.	Lal Mian	Choochang
81.	Mohammad Jaan	Seo	82.	Bahadur Khan	GAyal Ser
83.	Fazal-e-Haq	Jalkot	84.	Mohammad Iqbal Shah	Kai gah segal
85.	M. Raheem	Gayal Ser	86.	Fazul Rehman	Dogah
87.	Mohammad Wali	Gayal Ser	88.	Ser Khan	Looter Nullah
89.	Sayed Rasheed	Gayal Ser	90.	Bajal Khan	Pani Bah
91.	Maulvi M. Nazir	Dogah	92.	Ahmad shah	Choochang
93.	Taj ud din	Gayal Ser	94.	Sher Dad	Seo
95.	Abdul Qadoos	Gayal Ser	96.	Ashraf Ali	Seo
97.	Anar Khan	Pattan	98.	Abdul Waqeel	Dogah Seo
99.	Malik Falqoos	Kaigah	100.	Noor ul Haq	Kot Gul Kandia
101.	Fazal e Raheem	Kaigah	102.	Zakir Shah	Kaigah
103.	Sagheer Khan	Lugro	104.	Jameel Khan	Kaigah
105.	Sabr	Pani Bah	106.	Abdur Razaaq	Looter

List of Participants of Jirga (27th September)

Officials and Consultants at Jirga held on 27th September 2012

Sr. No.	Name	Designation	Department / Organization
1.	Haji Muhammad Farooq	Project Director	WAPDA
2.	Muhammad Akram	Xen	WAPDA
3.	Abdul Rauf	MFO	DHC
4.	Anwar Fazal Ahmad	Sr. Sociologist	DHC
5.	Rana Saleem	Resettlement Expert	DHC

List of Participants at Jirga held on 27th September 2012

Sr. No.	Name	Village	Sr. No.	Name	Village
1.	Malik Mukhtiar	Siglo	2.	Malik Samundar	Kandian
3.	Malik Qadam khan	Dogah	4.	Abdul Wadood	Kandian
5.	Malik Umer Khan	Siglo	6.	Haji Bakha	Kandian
7.	Gulab Khan	Melar	8.	Molvi Meer Hazar	Kandian
9.	Haji Abdullah	Dogah	10.	Molvi Haris	Kandian
11.	Bakht Buland	Seo	12.	Molvi Hiqmat Shah	Kandian
13.	Shah Jahan	Siglo	14.	Alam Zaib	Kandian
15.	Aqal khan	Jalkot	16.	Abdul Wadh	Kandian
17.	Hazarat Noman	Jalkot	18.	Fazal Ur Rahman	Kandian
19.	Abdul Jabar	Jalkot	20.	Malik Haider	Kandian
21.	Muhammad Iqbal	Kandian	22.	Malik Umer Khan	Siglo
23.	Mehboob Khan	Kandian	24.	Muhammad Shah	Seo
25.	Shahzada	Seo	26.	Muhammad Raheem	Gayal
27.	Haji M. Ashraf	Siglo	28.	Rakhyal	Seo
29.	Umer Khan	Siglo	30.	Raja	Kandian
31.	Karim Dad	Kandian	32.	Molvi Noor Nabi	Jalkot
33.	Raja	Kandian	34.	Malik Falqoos	Kaigah
35.	Wali dad	Seo	36.	Hibab Shah	Jalkot
37.	Khan Bahadur	Seo	38.	Molvi Shamshair Shah	Jalkot
39.	Abdul Rahman	Seo	40.	Gul Mian	Jalkot
41.	Muhammad Hussain		42.	Saeed Jameel	Jalkot
43.	Abdul Salam		44.	Molvi Abdul Haleem	
45.	Isham u Deen		46.	Muhammad Ali	
47.	Abdul Waqeel		48.	Abdul Jabar Khan	
49.	Hanan Shah		50.	Soan Mian	
51.	Abdullah Khan		52.	Molvi Iqbal Shah	Gul e Bagh
53.	Bakht Khan		54.	Abdul Sitar	Barseen
55.	Muhammad Ayub		56.	Hilal Khan	Jalkot
57.	Hazrat Ali		58.	Zia Ul Haq	
59.	Ghulam Saeed		60.	Ghulam Saeed	
61.	Mahboob	Thuti	62.	Saif Ur Rahman	Kandian
63.	Liaqat	Jalkot	64.	Zahoor	Uchar Nallah
65.	Fazal ur Rahman	Jalkot	66.	Orangzaib	Tangeer
67.	Iqbal	Thuti	68.	Taj Muhammad	Tangeer

ATTENDANCE LIST OF PESHAWAR

Registration and attendance

	Date: September 10, 2012						
Sr. No.	Name	Designation and Organization	Phone No.	Email			
1	Engg. Zia-ur-Rehman	Jr. Engineer, Saalik Foundation	0332 5024235	salik.zrehman@gmail.com			
2	Junaid Akhtar	S.D.F, Saalik Foundation Engg	0346 9365394	salik.junaid@gmail.com			
3	Arshad pervaiz	Director - Civil GM North (WAPDA)	0333 9404001				
4	Murad ali shah	C.R.G. Caravan (NGO)	0345 9053719				
5	Zahid akhtar	Director Energy & Power Dept., Government of KP	0333 9141644	murada_151@hotmail.com			
6	Dr. Idrees Masud	Chief Energy & Power Dept., Government of KP	03005897356	idreesmasood@yahoo.com			
7	Abdul Qayyum	DD, DHP, WAPDA	03224010564	aqwbads@yahoo.com			
8	Tabassum Khurshid	DD, DHP, WAPDA	0300 4116568	tabassumkh@yahoo.com			
9	Hasnain Afzal	GM Hydro Planning, WAPDA, Lahore	0300 8411244	hasnainafzal@hotmail.com			
10	Haji Muhammad Farooq	PD, DHP, WAPDA, Lahore	0300 4305595				
11	Dr. Amjad	DD - EIA, Environmental Protection Agency, Government of KP	9210148				
12	Muhammad Niaz	Deputy Conservator of Wildlife, Govt of KP.	03005926652	Niazkhanro@yahoo.com			
13	Usman Yaqoob	Additional Secretary P&D (Energy & Power), Govt. of KP					
14	Dr. M. Bashir	DG EPA, Govt. of KP	9210263	drmb63@yahoo.com			
15	Mr. Attia Dastgir	D.D, WEC, WAPDA, Lahore	042 99202429	dgwec@gmail.com			
16	Mr. Ishtiaq Ahmad Kokab	Director, WEC, WAPDA, Lahore	042 99202429				
17	Dr. Roohullah Jan	DD, Health Department, Govt. of KP	091 9213120				
18	Muhammad Tariq	DD, SHYDO, Govt of KP					
19	Dr. Rehmatullah Qureshi	DHC/Arid Agriculture University, Rawalpindi	0300 6730496	rahmatullahq@yahoo.com			
20	Dr. Sajid nadeem	DHC/ Arid Agriculture University, Rawalpindi	03008539455	sajidnm@uaav.edu.pk			
21	Venkata Nukala	Environmental Specialist, DHC, Lahore	0345 8454861	venkata@eng-consult.com			
22	Zafar Iqbal Ch.	DTL – Environment Specialist, DHC, Lahore	0300 9460132	zic42@msn.com			
23	Prof (R) Tahir Omer	Aquatic Ecologist, DHC, Lahore	0321 4077053	talhaomer167@gmail.com			
	1	1	1	1			

Location: PC Hotel, Peshawar Date: September 10, 2012

Sr. No.	Name	Designation and Organization	Phone No.	Email
24	Mudassar Hassan	Junior Environmentalist, DHC, Lahore	0333 9949488	enggmudassar@gmail.com
25	Irshad Ahmad Soomro	PCR Specialist, DHC, Lahore	0333 4366988	princesoomro1@yahoo.co m
26	M Kamran	Office Manager, DHC, Lahore	0301 8434466	
27	Dr. Inayat Ali Shah	Professor, Univ. of Peshawar	9216754	<u>driashahjeham@yahoo.co</u> <u>m</u>
28	Maqsood Ahmad	DD Civil GM Project (North), WAPDA, Peshawar		
29	Sajad Ahmad Khan	Director (Coordination), GM Planning North, WAPDA, Peshawar		
30	Qasir Jang khan	SE Civil WAPDA, Mardan		
31	Mohsin Ali Khan	DD(Civil) to GM (P) North Peshawar		
32	Zaigham Hasan	Asst. Prof. Dept. of Zoology Univ. Peshawar	0333 9387787	zaighamhasam68@yahoo.c om
33	Sultan Rome	Executive Engineer. T&M Dir. WAPDA, Peshawar	0346 9317874	
34	M Tariq	SNO T&M WAPDA Peshawar	0344 9599044	
35	Habib ulluh Bangash	Addl. S.E WAPDA, Peshawar	0333 9278863	
36	Col (R) Ayaz Khan	Chief Security officer, Peshawar	0344 9084585	
37	Mohd. Youns Khan	Deputy Chief Conservator Forest, Govt. of KP, Peshawar	0314 7575108	
38	Naveed Iqbal	DD, Head Quarters, Pakhtoonkhwa Highway Authority, Peshawar	0332 9471021	
39	Dr. Shah Khan	Director, Dept. of Archeology, Govt. of KP, Peshawar	0343 9069317	
40	Fawad Khalil	Assistant Director, Dept of Fisheries, Govt. of KP, Peshwar	0345 9036623	
41	Idrees Khattak	Personal Secretory MD SHYDO, Govt. of KP, Peshawar.		

DASU HYDROPOWER PROJECT Stakeholders Consultations Workshop on Environmental Assessment

Registration and Attendance

Location: PC Hotel, Peshawar Date: September 10, 2012

S.No.	Name	Designation and Organisation	Phone No.	Email	Signature
01	Engg. Zio U.L. Rehman	J.E. Eng] SAALIK Foundation	0332-S02423	Salit Zoehnank	om Julfus
02	Ilonai 8 Akalar	S.D.F SHUK Foundation Engrinder	a346-9365392	Nalin: Thenaila g mail. Com	May
03	Allshad Petwaiz	Dihector Civil GM North (WAPPA) GM Morth (WAPPA)	0333- 9404001	-	Aswer
04	Muhad Ali Shah	C.R.G Caravan (NGO)	0345- 9053719	muted A_ 1512 hotmail. Cow	Phines -
05	Rahid Abhtar	Dikector. Energy & fower Dept.	<i>03</i> 33 - 91416 4 4	Zasabhi dhotmod Com	7h
06	Dh. Johees Masud	Chief Energy & Power P&D Deft.	0300 - 5897356	Idress masood a Jahoo. Com	
07	Abdul Qiayyum	DD WAPEA	0324010564	agaibads a yohor.c.	At Onm

S.No.	Name	Designation and Organisation	Phone No.	Email	Signature
B	Tabassum Khurshid Ahmad	DD WAłDA	0300 - 4116568	tabassumth@yaheo	Togh-
9	Hasnuin Afzal	Gim Hydro	0300 841/244	hasnaiwagale hote	
10	Haji: Muhammad Faluood	PD Daru Phojet	0300 - 4305595		(J)
11	Dr. ft mjer	DD, SIN, ERA	920148	1	Anll
12	Muhammud Niaz	Deputy Cinservator Wildlife	0300 5926652	nioz khan ho d Jahoo. Com	mit
13	Ulsman Yasyoob	A.Sechetaiy P&D (Enugy & Power)	-	-	kup
14	Dh. M. Bathir	DG7 EFA	9210263	dźmb63@ Joho. · Com	
15	Mr. Attia Dastgik	D.D WEC WAPDA	042 99202429	dg wer@ gmall(r	-
16	Mr.gstiagallAhmad Kokob	Dikector - WEC WAPDA	042 99:02428	//	ARD
17	D.A. Rochullah Jan	Health repartment	091 92/3120	-	Rulle

S.No.	Name	Designation and Organisation	Phone No.	Email	Signature
18	Muhammad Tariq	SHYDO			Fig
19	Dh. kehmatullah Qureshi	DHC/Ahid Affi. University	0300-6730496	Nahmatullahg) Yahro. con	the
ю	D.L. Sajid Nadeem	DHC/Akid Agri. University	03008039400	sajid'nm@lianv. edu.pK	To Sond
21	D.K. Ventrata Muhalo	Envidonment Specialist DHC		Venkata Q e 27- consult. Con	Wy fund fer
dh -	Za Jar Iybal Ch	Envitonment Specialist DHC	0310-9460132	Zic 42 6 พรก.com	and interior
r]	Phof Tahir Omer	Aquatic Ecologist DHC	0321- 4077053	talhamel & Jahoo 'Com	1 Day
24	Muclassof Hashan	Envillenment Specialit DHC	o 333 - 8949 488	eng mudassar @ gnail. low	Judasser Hassan
zś	gushad Ahmad Soomroo	Ahchaelogist DH(
26	M. Kamlan	Office Manager DHC	03 01-84 31466		
21	DR. Wayat ali Shah	Professor.	9216754	Driashahjehan Qiyehoo.com.	

S.No.	Name	Designation and Organisation	Phone No.	Email	Signature
28	Magsood Ormed	DD. Civil Gm Project (Worth).			Myright
29	Saijard Ahmeel Khan	Div(Coorn) V 6/0 GmpNoin Psth			Ame
30	Quir Jang Khau	se civid wapde Mardau			Incorport
31	Marsin Ali bhan Dy. Dir (conil) wapda Dy. Dir (conil) posh	Dy. pir (Cink) Solam(P) Norm Pesh.	~		Remarks
32	Zaighan Hasar	Asst. Prof. Dept. of Zoo Logy Univ. of Pesh.	6333 - 9387 787	Taighan hasan 68	Mª T
33	SULTAN ROME	Xen Tambir Wapda, Pesh	0346 - 9317874		Aloms
34	M. Tang	SID THM Wapply Desh	0344 8599 044		Mafine-
35	Habib mun Bargar	Addl.S.E WTAPPA	03325 9278863		Munch
36	Cul hoch Apazie	Chief Servity Atta			la.
37	Micho Jomms Whe	Deputy Chig Consorran	0314-7575708 *	-	Journ
		J Fout lep fish.			

S.No.	Name	Designation and Organisation	Phone No.	Email	Signature
38	Noveed leyb l	D.) (ИО) РКИ А	0332 -947/02/		ð
39	Dr. Shah y Khan	Director Brith behave of Director Bishin	1 0343906937	Shuhngger Jul	Jaman Iman Culliworkieg Spees
40	Fawad khaeil	behave of Director fishing Assistant Director	03369303634	fourcel wope yo	al liwerper
41	1Diels Khoutan	Persond Seneteby MD Shydo.	03459036623	1	Ipres

ATTENDANCE LIST OF LAHORE

Registration and Attendance

Location: PC Hotel, Lahore Date: September 17, 2012

Sr. No.	Name	Designation and Organization	Phone #	Email
1.	Muhammad Shabbir	Director Hydro Planning WAPDA	0300 8191948	Shabbierkmboh@hotmail.c om
2.	Nazakat Hussain	Dy. Director Hydroplaning	0344 9507180	Nazakat5@yahoo.com
3.	Mujahid Tanveer Ahmad	Dy. Director Civil	0300 8866470	Tmujahid01@hotmail.com
4.	Muzammil Hashmat	Dy. Director civil, Hydroplaning	0300 3557693	Muzammil hashmat@yaho o.com
5.	Abdul Qayyum	Dy. Director WEC. WAPDA	0322 4010564	aqusbadh@yahoo.com
6.	Tabbasum khurshid Ahmad	Dy. director WAPDA		
7.	Prof (R) Tahir Omer	Aquatic Ecologist	0321 4077053	talhaomer167@gmail.com
8.	Muhammad Azam	Dy. Director DHPP WAPDA	0333 6102315	
9.	Haji Muhammad Farooq	PD DHPP	0300 4305595	
10.	Mudassar Hassan	Junior Environmentalist	0333 9949488	enggmudassar@gmail.com
11.	Awais Hassan	Junior Sociologist	0333 6563675	awais_sblc@yahoo.com
12.	Dr. William George	Fisheries Expert	0345 4071422	williamgeorge@fccollege.e du.pk
13.	Irshad Ahmad Soomro	PCR Specialist	0333 4366988	princesoomro1@yahoo.co m
14.	M Talha Javaid	AD ENU. WAPDA	0313 4414416	Siddiqw.tj@gmail.com
15.	M Abaid Sheikh	HEPO WAPDA	0333 4309767	
16.	Hafiz M Mukhtar	HEPO WAPDA	0323 4810449	Muk797@yahoo.com
17.	Sheraz khalid	Dy. Director HIPO, WAPDA	0321 6318492	Sheraz_engr@hotmail.com
18.	Dr. M. Tusif Bhutti	Assistant Prof.	0321 4327978	Tousifbhatti@yahoo.com
19.	M Shahid Amin	Assit. Dir. WLECT, DHPP	0333 4144711	<u>shahidaminsahi@gmail.co</u> <u>m</u>
20.	Hasnain Afzal	GM Hydro planning		
21.	lijma Motohico, PM	Project Manager	0304 4569583	dhp@dasu-dhc.com
22.	Dr. M. Zaman	Social & Environment Team Leader	03064081056	drmzaman@yahoo.com
23.	Zafar Iqbal Ch.	DTL Environment	0300 9460132	zic42@msn.com
24.	Dr. Ghulam Haider	M Partner DMC	0333 4211575	
25.	Sunil Goonetilleke	Resettlement Specialist	0345 8454863	Preethi_goonetilleke@yaho o.com
26.	Malcolm Winsby	Aquatic Ecologist	0305 4589718	mwinsby@gmail.com
27.	Venkata Nukala	Environmentalist Specialist	0345 8454861	venkata@eng-consult.com
28.	Mrs. Farida Javaid	PEC	0333 5134069	Engr.faridajavid@gmail.co m
29.	Adil Hassan	AD WAPDA	0345 4022161	9022161@gmail.com
30.	Shah Mulk	Director WAPDA	0301 4798039	
31.	M Anwar	WAPDA	0321 4178803	

Sr. No.	Name	Designation and Organization	Phone #	Email
32.	M Mughees Arif	AD WAPDA	0334 4691464	mugheesarif@yahoo.com
33.	Ahmad Faisal	AD WAPDA	0300 4235240	ahmadfaysal@gmai.com
34.	Zia-ul-Hassan, DPM	Deputy Project Manager	0333 4691464	dhp@dasu-dhc.com
35.	Abdul Wahab	HEPO	0333 4135251	
36.	Hassan Hashim	WAPDA	0300 6345815	
37.	M Zeeshan	WAPDA	0300 8010702	
38.	Syed Ijaz Hassan	DD Elee. WAPDA	0313 4354912	
39.	Zai-ur-Rehman	WAPDA	0321 4612199	
40.	Waqas Mukhtar	AD WAPDA	0321 8846942	
41.	Faheem Shahzad	WAPDA	0300 7722787	
42.	Azhar	WAPDA	0333 4716606	
43.	Aqeel Ahmad Bashir	WAPDA	0344 5560461	
44.	Saleem Munawar	AD WAPDA	0345 4791104	
45.	Syed Ahmed Masood	ADE WAPDA	0300 8814217	
46.	Faisal Shahid	ADE (ELECT) WAPDA	0345 8737370	
47.	M Junaid Ghauri	ADE (Civil) WAPDA	0331 4561982	
48.	Falah-ud-Din	Director WAPDA	0300 5255467	
49.	Ch. M. Munir	Managing Partner DMC	0333 4210932	
50.	Dr. Farzawd	HOD Archaeology PLI	0321 4535383	
51.	Akbar Ali	LAER WAPDA	0321 4562745	
52.	Ishteqaq Ahmad Kaukab	Director (WEB)	0301 5710104	
53.	Mr. Attia Dastgir	Ass. Dy. dir. (WETC)	042 99202429	
54.	Ahmad Ameen	JE (Civil)	042 99202429	
55.	Dr. Mubrik Ali	CE, PARB	0322 4490772	
56.	Dr. Arifa Lodhi	GM. SUPARCO	0300 9273555	Arifa lodhi@yahoo.com
57.	Danyal Hashmi	WAPDA	0300 4344584	
58.	Riaz-ud-Din	Director Hydro Planning	042 99202727	
59.	Sajjad Hussain	Dy. Director (Geo) Hydro Planning	-Do-	Sajjad.balghri@gmail.com
60.	Imran Ali	Jr Geologist	-Do-	
61.	M Nauman Nazir	Jr Geologist	-Do-	
62.	Ijaz Ahmad Khan	Director NDC	0300 8473540	
63.	ljaz Ahmad ljaz	Hydro Planning WAPDA	0300 4219844	
64.	Ejaz Ahmad Khan	Dy. Director (GEOL) Hydro Planning WAPDA	0300 4347529	
65.	Naseer Ahmad	Jr. Geologist Hydro Planning	0333 4310249	
66.	M Khalid Awais	Secretory Energy		
67.	Ihsan Qadir	AD WAPDA	0300 4448416	
68.	Aroos Munir	AD WAPDA	0333 4478483	
69.	Munhammad Rafique	Director (Keyal)	0302 3953103	
70.	Ashfaq	Dy. Director WAPDA	0333 4899902	
71.	Dr. Eng. Abdullah yasir	Assistant Prof. SDSC GC University	0300 4293718	
72.	Muhammad Bashir	Chief (W-P)	042 99210365	
73.	Ahsan-ud-Din	Dy. Director Fisheries	0333 4452587	
74.	Fatima Taseer	ADF Asst. Design ENG	0331 8441207	
75.	Rabia Farooq	WAPDA		
76.	Khalid Abu-Bakar	Dy. Director Behalf of GM(C&M) WAPDA	0323 4603167	
77.	Maseem Zehra	Chief Executive Aurat Foundation	0300 4815122	
78.	Dr. Raheel	GM (LAOR)	03007807070	

Sr. No.	Name	Designation and Organization	Phone #	Email
79.	Dr. Ali Hussan	Assist. Livestock specialist	0322 2066029	
80.	Maqsood H Bungish	Social Specialist	0346 9051018	
81.	Farhana Mazhar	WAPDA Gender Sp.	0303 4377776	
82.	Raheel Mustafa	WAPDA Asst. Agronomist	0300 5315110	
83.	Ahsan Ali	WAPDA Asst. M&E Specialist	0321 9621432	
84.	Harris Basharat	Asst. Community Development Specialist	0321 8426969	
85.	Azam Saeed	WAPDA Chief Arch. DHC	0324 6110273	
86.	Sohail Ali Naqvi	Coordinator WWF	0301 6056514	
87.	Dr. Khalid Mehmood	Assistant Prof. Veterinary University	0300 4664375	
88.	Maqsood Ahmad	DG EPA		

Registration and Attendance (Scanned)

DASU HYDROPOWER PROJECT

Stakeholders Consultations Workshop on Environmental Assessment

Registration and Attendance

Location: PC Hotel, Lahore Date: September 17, 2012

S.No.	Name	Designation and Organisation	Phone No.	Email	Signature
01	Muhammad Shabbik	Dikector Hydro (with hydro	0300 - 8191948	Shabbil Kmbeh a hstmail Cem	Acrus
02	Nazakht Unesai	Dy. Directi Hydri Planip	0344-950 7188	nazakets & Jaho Con	la.
03	MUJAHPD TANVERR AHMAD	Dy. Disector (CIVIL)	0300-88 68470	tmujahido/ Chotmail. Com	
64	N/	DEPUTY BIREETOR (CIVIL), HYDOPAWAUG	0300-355 7693	muzernail hestarte ph	
05	Abdul Qoffum	Dy. Dittector WEC. WAIDA	0 322- 4010564	aguited b Dychos. in-	Hellan.
06	Tabbasum Khulshid Munad	Dy. Diverior WADA	0300-4116568	tabassum Kh@ Jahoo.	Talay
07	Tahil Comer	DHC	0321-4077055	Tachoomee @ Jahwo . Cou	Jalui

٢

Т

S.No.	Name	Designation and Organisation	Phone No.	Email	Signature
08	Muhammad Azam	DY-DOL DOSN HPP WAPM	0333610231	2	A
09	Haji Muhammad Fatoog	PD. DHP	0300 - 4305595		C/K
10	MUDASSAR HASSAN	DHC	0333- 9949488	enggmudastar D gmail. Co w	Audacias Harran
1	Awais Hassan Khan	DHC	0333 6563675	invois, sblc@quail . con	Ann
12	Phof. Dr. William Greckye	Fisherics Expert DHC			ANGET
13	Hishard Ahmad Scomfoo	Akchaeo, lozist DHC	0373-4766988		St//
14	M-Talko Javaid	AD Enu. WAPIA	0313- 4414416	siddigen. tj	Jully
ış	M-Abid Sheibh	HEPO WAPDA	0333- 4309767	Mabridsheikis @gmil.(m	n Hi
16	Hafiz M. Muthhar	HEPO WAPDA	032}- 4810449	MUK797Q Jehorion	Hind show to -
17	Sheraz Khalid	Dy. Director, HPO WAPOA	0321-6318492	sheraz_eregr@ holomike	/bm}

S.No.	Name	Designation and Organisation	Phone No.	Email	Signature
15	Dr Muhaummend Tousy Shiet	i Arnistant Post.	0321-4327978	tousy bhatti Cychan	in zeigenti
19	M. SHALHD AMIN	Assit Did, ELE T. DASU HAPP Wapde	0333-4144711	sheh daminschiQ 8 mail	forme the
20	Hasnair Afzal	Grad Hydro Plannig			Hasnan
21	Motohiko IDiMA	PM. DHP			Nin
22	D.L. M. Famau	Teau Leader Env/Social DHC		mgzamen bc@gineil	ML
23	Rofar Gybal Ch	Envidonment specialist DHP	0300-9460132	Zich2@m.dn.Com	2 fuidal
24	Dh. Crhulan Haider	M. Partner DMC	0333 - 4211575	7	Grouble 22
25	Sunil Gumetillehe	lese Hlement Speivalist	0305- 4608342		27
26	Malcolm Winsby	Aquatic Ecology Expert >HP			r Admit
27	Dr. venhito Nubalo	Env. Specialist			NU for for

S.No.	Name	Designation and Organisation	Phone No.	Email	Signature
18	NHS. Farida Javaid	PEC	0393- 5134069	Cupi. Jarida Javed Ogmail, Cu	Javel Javed
29	Adil Haisan	AD WAFDA	0345. 4022/61	40221110 gmailican	Heuld
30	Shah nulh	Dilletor WAPDA	0301- 47980364		a
31	M. Anwar	WBPD4	0321- 4171803		POR
32	M. Mughees Arif	AD WARA	0334- 4019506	my-eesail@the	Mahad d
\$3	Ro Ahmed Faisal	AD WAPDA	0300- 4235240	ahmad fory saleg.	ninf.com Cul
34	Zia-ulHassau	DfM DHP	0333- 4691464		lia-Uffar
35	Abdul Wahab	HEPO	0333 -4135251		1 milled
36	Hassan Hashiri	WAPDA	0300 6345815		inte
37 -	M. Zeeshan	wapda	0300 8010702		Ja del

S.No.	Name	Designation and Organisation	Phone No.	Email	Signature
38	Spect isaz Hussain	DD Elee WAPDA	0313- 4354912		and i
39	Zia - Ul - Rehman	walda	0301 4612199		Maletman .
40	WA9/25 Mikhtar	AD WAPDA	0321 *8846942		wagas
41	Faheem Shahzad	WAPOA	0300 7722787		NP.Y
42	Acha Ming	WAPDA	0333 47/6606	Chip-1	inglar
43	Agece Almad Bashir	WAPDA	0344-5566461		A
44	Saleem Munawoid	A:D wapda	0345-4791124		A.W.
45	SYED ATAMED MASOND	ADE. (MECH) WAPDA	6300-8814217		Annel .
46	FAISAL SHAILY O	ADE (ELEI). WAPI)A	034\$-8737370		4
47	M. JUNAID GHAURI	ADE (civil) WAPDA	0331-4561982		1

٢

S.No.	Name	Designation and Organisation	Phone No.	Email	Signature
48	Falah ud-Din	Dihector wAPDA	0 3m 5255467		Eusly,
49	Ch. M. Munir	Managiny Partnel DMC	0333 - 4210932		Kafe
50	Dr Farzand	HOD Akibacology Pu	0321 + 4535 383		Z.
ŚI	Ahibar Ali	LAGOR WAPDA	0321- 4562745		H. J. 21
52	ÎSHTEQHQ AHMAD KAUKAB	DIRECTOR(WEC)	0301.5710104		He .
53	Myr. ATTA DASTSIR	Adr. Dy. Div(wetc)	042-99207429		Ali
54	Ahmad Ameen	JE (Civil)	042-992.02429		Friles
ST	Dr. Mahamilt Al	CP. JARB	132244 407	71	1_htt
54	DS: Arifer Lali	GAM. SWARCO	03019273555	-arif-lcolle tolu a	mei
57	DS: Arifer Lalui Danyal Hashnii	WAPDA	03014344	1584	hallies

S.No.	Name	Designation and Organisation	Phone No.	Email	Signature
58	Riaz ud-Din	Diketor Hydlo flonnig	042-992027 27		meaning
<i>ś</i> 9	Sajjad Hussoin	Dy Disector (Geo, Hydre Pare	do-	Sajord baldro	i Bum
60	Innon Ali	Ir. Greelogist	- do-		2.p
61	M. Nauman Nagn	4	G		orly
62	IJAZ AHMAD KHAN	Director NDC	0300 8473]74		and
63	iJaz Ahmad Naz	Hydro Plannig WAPDA	0300- 4219844		fighta.
Eh	Ejaz Ahmad Khan DY-Dik (Geal)	WAPDA	0300- 434-7529		Geof Alma
65	Naseer Ahmad	Tr. Geolopist Hydroplenning	0332 - 43/04	p	for fronce
66	M. Khalid Awais Banjha	Secretary Energy			Hur
67	Ihsan Gadir	AD WAPDA	° 300 - 4448416		En Oal

S.No.	Name	Designation and Organisation	Phone No.	Email	Signature
68	Alors Munit	AD EPA	0333- 4478483		AJOTY
69	Muhammeel Rafigue.	Directolkeyal	0302- 3953103		Caluel.
70	Ashlag socail	(WAPDA) Dy! Dinecke	0.33348989	62	AMPread
71	Dr. Ery, Anduruch your	fort of huf SDSC GC uning	03004291	118	All
72	Mukeenal Boghil	Chief (W-P) P-3 Dept	8429921035)		A.
73	Ahsan ud-Din	Dy. Dikector Fisheries	033]= 4451587		L.e.
74	Fatima Jaseer	A DF . Assl · Deigh tugn	0331 - 344120		Andrea
75	Rabie Farmar	WAPD4			lemi
76	Khalid Abu Bahar Dj. Dik	G. Dehalfsz CIM (CEM) WAPDA	0323 - 460 3167		Kalmu
77	Naseen Zehła	Chief Executive Aurat Facudation	63068[5112		Al

S.No.	Name	Designation and Organisation	Phone No.	Email	Signature
78	DA Rehed -	GM-(LAOR)	6300 7607070	Imlerp O gin	12
79	Da AliHassan Crow	Assoch lived och sten dis	66029	ilihessenagod Oxthesion	A.
80	Mashool H. Bongash	Social Dev. Speciality	2057018	jalquansa Paho.G.	R
81	Farcher Mezho	Creveleo Sp	0303 437776	Lorhounghe Egneilin	
82	Raheel Mustafa	WAPDH Asstl: Agrinomix F	03+0-531540	a yahoo lom	
83	Ahsan Ahi	WAPDA Asaq: MEE Spend	0321- vij 9621432	ahson 101 (ayahoo	f di
84	Harvis Basharat	Asst Community Development Specialit	QUILOUD	harrisbasharat () gmail, an	Alma
85	AZM SAEED)	Chief Arec. DHC.	0324-64027	3	Manuf
86	SOHAIL ALI NAQVI			engr-noquissa Qyahora	S. M.
8Ŧ	Dh. Khalid Mehmood	Assistant Phofessor veternialy university	03m- 4664375	raciankhalide gu	alies pland

S.No.	Name	Designation and Organisation	Phone No.	Email	Signature
88	Maybood Ahmad	DG EPA			hel

Annex – 12.7

ATTENDANCE LIST OF KARACHI

Registration and Attendance

Sr. No.	Name	Designation and Organization	Phone No.	Email
1.	Haji Muhammad Farooq	PD, Dasu HPP WAPDA		
2.	Tabbassum Khurshid Ahmad	DD, Dasu HPP WAPDA	03004116568	tabassumkh@yahoo.com
3.	Abdul Qayyum	DD, Environment Dasu HPP, WAPDA	03224310564	aqwbadb@yahoo.com
4.	Dr. Venkata Nukala	Consultant DHP		Venkata@engconsult.com
5.	Zafar Iqbal Ch.	Consultant DHP		
6.	Irshad Ahmad Soomro	Archaeologist DHP	03334366988	Princesoomro1@yahoo.co m
7.	Mudassar Hassan	Consultant DHP	03339949488	enggmudassar@gmail.com
8.	M. Kamran Khan	DHP	03018434466	
9.	Farhana Mazher	Land Acquisition and Resettlement WAPDA		
10.	Ali Hassan	LA&R WAPDA	03222066029	alihassangood@yahoo.co m
11.	Dr. Asadullah Kaz.	Chancellor	022-2030177	asadkz@isra.edu.pk
12.	Dr. khan Mohammad	Dir. Mehran University	03003048281	kbrohi@hotmail.com
13.	Akbar Ali Khaliyar	Environment Specialist LA&R Wapda	03214562745	
14.	Dr. Imdad Siddiqui	Prof. University of Sindh	03332622429	siddiqui57@gmail.com
15.	Mrs. Imdad Siddiqui	Prof. University of Sindh	03003033557	
16.	Dr. Atif Mustafa	NED University	99261261 ext 2624	atifm@nednet.eud.pk
17.	Ghulam Abbas	Dy. Secretary Livestock & Fisheries	021-99203393	
18.	Rahat Najam	PCMU, P&D Environment Specialist	021-99205862	rahat@wsip.gov.pk
19.	Dr. Raheel Siddiqui	GM (LA&R) Wapda		
20.	Javed Iqbal	Engg. Review Magazine	0300-2292166	j.iqbal25@yahoo.com
21.	Jawed Akhter	WISP P&D Wapda	0321-3021307	
22.	Haider Saeed	Gal + WAF	03456159967	hildersaeed@gmail.com
23.	Zeeshan Soomro	PTCL Asstt. Manager	03218203020	Zeeshanhsoomro@yahoo.c om
24.	Wilson Sabir	PTCL S. Officer	03333237275	wilsonathwai@yahoo.com
25.	Rafi-ud-Din	DG, EPA	021-35065946	
26.	Iqbal Ahmad Soomro	Add. Secretary Socio Welfare Deptt.	0300-8999124	iasumro@yahoo.com
27.	Akhter Hidayat Khan	PD Vinder Dam	03448275877	Akhter.hidayat@yahoo.com
28.	Riazudin	Cure	03413402969	
29.	Abdul Shamin Sheikh	Hydropower	03003587056	
30.	Dr. Fahmida Fardous	Sindh Wild Life Deptt.	03072258925	
31.	Riaz	Engg. Review	03223250717	
32.	Muhammad Afzal	Dy. Secretary Culture	03012196874	Afzal channa@hotmail.co

Location: Avari Towers, Karachi Date: September 24, 2012

Sr. No.	Name	Designation and Organization	Phone No.	Email
		Deptt.		<u>m</u>
33.	Saleem Qureshi	CLRK WAPDA chief engineer		
34.	Ziaul Haq	Dir Protocol Wapda		
35.	Mr. K.M. Brohi	Land Lord		
36.	Mubashir Ahmad	Mehran University	03452790559	
37.	Waseen Ali Bhutto	DM state life	03009226173	waseemalib@aol.com

Registration and Attendance (Scanned)

DASU HYDROPOWER PROJECT Stakeholders Consultations Workshop on Environmental Assessment & Cumulative and Induced Impacts

Registration and Attendance

Location: Avari Towers, Karachi Date: September 24, 2012

S.No.	Name	Designation and Organisation	Phone No.	Email	Signature
1	Haji Muhammad Farooq/	PD, Dasu HPP WARDA			1. July
2	Tabbassum Khusshid Almad	DD, DAW HAP WAIDA	03004116568	talakum Khe yahoo	Bashiz
3	Abdul Qaffum	DD, VIECEnnisonat Jam Hpp: WAPDA	03224,11,564	ag puball & Jahos 4	Q
4	Dr Venbata Nubala	Consultant DHP		Venland ag	NEWEW
Ş	Rofar Inval Ch	Consultant DHP			> w/ cr. h. wl.
6	Isthad Ahmad Soomboo	Ahchael-gist DHP	0333-4366985	Riversoomero 1 & Alow. com	

S.No.	Name	Designation and Organisation	Phone No.	Email	Signature
7	MUDASSAR HASSAN	Consultant DHP	0333- 9949488	enggmudadar D gmail. Com	A udasser Harken
8	M. Kamlan Khan	DHP	0301-8434466		Allamace.
9	Forhana Mazhan	Wand Sustein And Settlem & Wapsa	2		2" only
10	Dij Hubsan	and exciticion and exciticion Wap-Sa.	0322-2066029	alihassingead the	And
lÌ	Dr. Andulesh Kaz	Chancellor	022_203617	z aradkije ism	shipk the
12,	Dr. KHAN MOHAMMAD	Dir Mehrou Uninstiy.		Kbrohia) holmaile	
13	All Sour Ali belglig	en CARK Wylle	0321-45627	45	ARCE
14.	Dr. Inded Siddiqui	Myessia University of Suide	033326 22429	Seldignis? Q	on Andal
is	Mys. Jundard hiddlynie	Aref Library Sciences Prof University of Sunda	03103072552	v	Week,
16.	Dr. Acij Mustape	Ned University	99261261 Bet 2624	citifm@ neduet.edu.pk	Rowhen

Karachi, 24 September 2012

3*

S.No.	Name	Designation and Organisation	Phone No.	Email	Signature
17	Ghurann Abbess	Depy, Secretary. Linestock & fisheries	021-99203 - 293	Abbes Maich Photons	loue the the
18	Rahat Najam	PCMU, PSD. Environmental Specialize,	02 19920585	wahat Ewsip. 55	lahet.
19	Dr. Raheel Siddiaw	GM (LAER) Waipda	Ø	рс	2
29	Jowed 19bal	Engy, Revive McgZine	03 60.1292	j. i ghal wo vel	J.J.
Zİ	Jowed Achien	WISP PED Wapda	0321-3021307		25-5-
24	Alda Saeed	Sliveat Gali + WAF	0343- 6159967	hilder gread @ gnail. com	Bli
2 ³	Zeeshen Sommo	PTCL Asst Manyer	6321-82030	ko ZeethantBoonthu€ Yahoo. Gm`	Jerdang.
zu	Wils-N. SABIR	PTCL S-officeto	0333-323727	@HAHOO.com Wilsonna THWAI	Julon
ıś	Rafi Nd-Din DG, EPA	DG, EPA	021-35065946		
26		Astitude Surdany Social Welfane Dept	03:A-899912y	lasumo@yahoo.	£.24/9.

Stakeholder Consultations on Environmental Assessment & Cumulative and Induced Impacts of DHP

Karachi, 24 September 2012

1

Karachi, 24 September 2012

		Designation and			
S.No.	Name	Organisation	Phone No.	Email	Signature
27	AKNton Hidlayat Khan	P.D. Winder Dam	0344-827587	Alehter Hidayali C Yalm Can	Mr. Heyal
28	Riazuddi	Cure Turan /s/0			
R	Abdul Shamin Sheikh.	Hydre Power-	0300-35875	B	AGU ANNI ANNI
20	Dr. Fahmide firstous.	B SINDH WILD UFE DEDT	0307-225892	\$	Alle.
31	RIAZ	ENGINEERLING REVIEW	0322-3250777		USIO(Ly
32.	MUHANMAD AFZOL	DEPY. SEGLETDRY CULTURE DEPTI.	0301-2196874	April Channa O hormail. Com	- Nor
33.	Saleen Churreshi	CERK WAPDA Chief Engineer.			MAR
34.	Zianl Hue	Dir Antocol Wapsa.			hum
<u> </u>	No. K.m. Brow	Land Lord			O lev
36	Nubarlin Alued	Mehron uni Student.	0310-27 fo.07 f		Mary

Stakeholder Consultations on Environmental Assessment & Cumulative and Induced Impacts of DHP

Karachi, 24 September 2012 Designation and S.No. Name Phone No. Email Signature Organisation hoesemalis @ ad. cen D. M. Style 47 050 9226173 Ja Soon 37. Josen se Bhuts.

Annex – 12.8

ATTENDANCE LIST OF ISLAMABAD

Registration and Attendance

S.No.	Name	Designation and Organization	Phone No.	Email
1.	Chaouha Zhang	Social Expert World Bank	0301-8502527	czhang7@worldbank.org
2.	Rana Attia Dastgir	Add. Dy. Director WEC	042-35842653	
3.	Ishteqaq A. Kaukab	Director (WEC) WAPDA	0301-5710104	dgwec@gmail.com
4.	Engr. Muhammad Khan	Dy. Director (Tech) EPA, Balochistan	0333-7803543	uthmankhail@yahoo.com
5.	Mazhar Ali Shah	Chairman IRSA	0300-3016620	mzhar107@yahoo.com
6.	M. Ibrahim A. Rind	Retd. Chief Engineer, Irrigation Deptt, Balochistan	0300-3701183	
7.	Dr. Rubina Kausar	Asst. Director (Environment)	9032515	rbnksr@yahoo.com
8.	Dr. Abdul Rahim	Director PSP PMU	9252090	rajpar55@yahoo.com
9.	Muhammad Shaifq Awan	District Officer Rawalpindi Social Welfare	0333-8101665 4474010	sdo.rwp@yahoo.com
10.	M. Omar Khalid	Environment Specialist, World Bank	0333-5170767	mohalid@comsats.net.pk
11.	Abdul Rauf Shaikh	Registrar, Pakistan Engineering Council	0300-9567590	
12.	Engr. Muhammad Sohail	Pakistan Engineering Council	0345-9384064	
13.	Omar Javed	Regional Coordinator, Sungi	0345-8590551	omar.javed@sungi.org
14.	Ahmad Saleem	Consultant	0333-5113391	kasuris@gmail.com
15.	Javaid Afzal	Sr. Environmental Specialist World Bank	051-9090150	
16.	Awais Saleem	P&C Specialist PMPIU / WCAP	051-9244550	awaissaleem74@gmail.com
17.	Dr. Amjad Nabi	PMPIU / WCAP	0300-6441212 051-9244669	nabiamjad@yahoo.com
18.	Dr. Sajid Nadeem	DHC	0300-8539451	sajidnm@uaar.edu.pk
19.	Dr. Rehmat ullah	DHC	0300-6730496	rehmatullah@yahoo.com
20.	Dr. Mazhar Qayyum	Zoology / AAUR	0301-5153788 9290015	mazhardr@yahoo.com
21.	Sarfraz Ahmad	Chief (Water) P&D Division		
22.	Bareerah Fatima	RO Water P&D		
23.	Safia Shafiq	Env. Specialist ADB	0333-2154462	sshaiq <u>sultant@adb.org</u>
24.	Ozaki Yoshihiro	JICA	0334-5131843	ozaki.yoshihiro@jica.go.jp
25.	Imran Ahmed	JICA	0334-5169727	imranahmed.pt@jica.go.jp
26.	Mir. M. Muazzam	Dy. Manager PPIB	0300-4258607	mir872@hotmail.com
27.	Hamid Marwat	Chief Env. P&PD	0300-5248605	marwat67@yahoo.com
28.	Farhana Mazher	Gender Specialist LA&R WAPDA	0302-4375176	farhanmazher@gmail.com

Location: Serena Hotel, Islamabad Date: October 2, 2012

S.No.	Name	Designation and Organization	Phone No.	Email
29.	Dr. M. Bashir Khan	DG EPA KPK	9210263	drmbk63@yahoo.com
30.	Ahsan Ali Shah	Asst. M&E Specialist	0321-9621432	ahsanlarp@gmail.com
31.	Raheel Mustafa	Asst. Agronomist	0300-5315110	rmustafa2003@yahoo.com
32.	Akbar Ali Khaatian	Env. Specialist LA&R WAPDA	0321-4562745	khatyan90@hotmail.com
33.	Muhammad Waseen	Provincial Coordinator Irrigation Balochistan	0333-7808780	waseem.qtes@gmail.com
34.	Fovad Khan	Env. Specialist World Bank	051-9090188	fkhan8@worldbank.org
35.	Bilal Ali Qureshi	VPO/ UNDP	0321-5177774	bilal.qureshi@undp.org
36.	Imran Durani	PD 100 Dams	0301-8386600	pd100dams@gmail.com
37.	Munir Ahmed	Asst. Project Engineer	0333-7801100	pd100dams@gmail.com
38.	Ather Hameed	CE (DSC)	0321-5136262	awanather@hotmail.com
39.	Dr. Qazi Tallat M. Siddiqui	DEA (C) CEA/CFFC	0333-5254670	<u>qazitms@yahoo.com</u>
40.	Himayat ullah Khan	Sp. Secretary	0300-8111953	
41.	Dr. Nadeem Amjad	Member (NRD) PARC	0300-5199466	pare.nadeem@gmail.com
42.	Dr. Rahem Z.A. Siddiqui	GM LA&R Wapda		gmlarp@gmail.com
43.	Nasir Majeed	DPD 100 Dams, Balochistan	0301-3772602	nasirdpd@gmail.com
44.	Nargis Sekandari		0343-5049644	nash_behsudi@hotmail.com
45.	Um-e-Kulsoom Dua Zubair	Director Duaa Foundation	0321-2005309	duaazubair@gmail.com
46.	Naeem Ashraf Raja	Director Biodiversity	0333-5201689	naeemashrafraja@yahoo.co m
47.	Dr. Shahzad Jehangir	M/o Climate change	9245586	jehangir2000@hotmail.com
48.	Zulfiqar H. Shah	XEN SWHP WAPDA Rawalpindi	051-4414623	sayyed474@gmail.com
49.	Irshad Ahmad Soomro	Archaeologist DHA	0333-4366988	princesoomro1@yahoo.com
50.	Dr. Fazal Dad Kakar	DG Archaeology	051-9252516	
51.	Tahir Saeed	Asst. Director Archaeology	051-9252516	
52.	Haji M. Farooq	PD Dasu HPP		
53.	Mr. Hasnain Afzal	GM Dasu HPP		
54.	Tabbassum Khurshid Ahmad	Dy. Director WAPDA		tabassumkh@yahoo.com
55.	Talha	Asst. Director WAPDA		siddiqui.tj@gmail.com
56.	Motohiko Iljima	PM Dasu HPP		
57.	Zia-ul-Hassan	DPM Dasu HPP		
58.	Dr. M. Zaman	Team Leader Social & Env. DHC		
59.	Dr. Venkata Nukala	DHP		venkata@engconsult.com
60.	Malcolm Winsby	DHP		mwinsby@gmail.com
61.	Dr. William George	DHP		
62.	Dr. Allah Baksh	DHP	0306-4688853	

S.No.	Name	Designation and Organization	Phone No.	Email
	Sufi			
63.	Zafar Iqbal Ch.	DHP	0300-9460132	zic42@msn.com
64.	Maqsood Ahmad	DHP	0300/0321- 8424754	amaksood67@yahoo.com
65.	Mudassar Hassan	Jr. Env. DHP	0333-9949488	enggmudassar@gmail.com
66.	Samia Rauf	DHP	0321-5257080	samia.raof@hotmail.com
67.	Iffat Idrees	DHP	0300-5308652	
68.	Dr. Kashif Sheikh	Terrestrial Ecologist (Int.) DHP	0300-8454860	
69.	Fawad Gillani	EPA Quetta	0336-5301160	
70.	Maria Khan Ch.	RA CIIT	0332-5109705	mdrr@udma.gov.pk
71.	Ahmed Kamal	Member (Planning & DRR), NDMA	9215412 0300-5278987	ifaengineer@gmail.com
72.	Ahua Qaranami	Dep. Of Archaeology	0300-5011483	
73.	Saifullah Awan	Dy. Dir. Pak-EPA Islamabad	0333-5523987	

Attendance and Registration (Scanned)

DASU HYDROPOWER PROJECT Stakeholders Consultations Workshop on Environmental Assessment & Cumulative and Induced Impact Assessment

Registration and Attendance

Location: Serena Hotel, Islamabad Date: October 2, 2012

S.No.	Name	Designation and Organisation	Phone No.	Email	Signature	
ci	Chaoudo Zhang	Social Expert Wickled Bank	ozo1850252	P czban gz @ cu	nedbark.onp CP	3
02	RANA ATTNE DASTSIR	ADD Dy . 21 2 いた	042 - 3584265)	1	Ang	
03	ISHTEQAQ A. KAUKAB	DiRECTOR (WEC)	0301-5710104	Agwec @ gmail · Ex	the	
٥٤١	Engh Muhammad Khan	EPA, Balochistan DJ.Dil (Tech)	0333 - 7803543	Whman Khail	-	
05	Mazher Ali Shee.	Chairman 1884.	03-00 3016824	mzholo7@jak	ct we	
06	M. Ibrahim Aich	Beta Chief Engineer Istrigation sept. Balochita	5300 370(183	L	11 2	_

6.No.	Name	Designation and Organisaton	Phone No.	Email	Signature
o7	Dh. Rubine lause	AD(Env)	9032515	Monkszapa	, Julie
08	Dr AD ul Rahi	Director, PSP PMK	9252092	syperssered	a Qui
c9	Mahammed Sharfey	Dell Eficer Rug Social welfort	9 4474010 03338101665	both hup Q.Yok	- Jacoba
10	M. Omer Khah	Env. Specialist	03335170		JO comparts.net.pl
11	Abdul Raw Shaikh	Registran Pakistan Egineurg	0300-9567590		A
12	Eng. Motured Strail.	PEC	03559384	<i>{y</i>	4
13	Omar Jowed	Reginal cooling St	ungj 0345-8590	SS omar. Janal .	Sway-on still
14	Ahmad Saleem	Consultant	0333-511-33,	Kaymila 91 gminil . 4M	M.
15	Javaid Afral	Se Envit Sp.	05(-9090) S	0	
16	Awair Salery	Prapiu/incap PROC. Ap	051-924455	awassaleen 0 74 Rail.com	

S.No.	Name	Designation and Organisation	Phone No.	Email	Signature
17	Dr. Amjad Nabi	PMDIU/weap	057-924466 82006441212	Mabian Jael C Jahoo.ca	2 Ay
18	Dr. Safid Nabas	DH	03208534	jj Sajiduma t	ians.edu.px. s
19	Do. harhnafullet	DHC	0300-6730496	rahmetullel fely	D.
20	Dr. Marchar Oayyu	- Zeenetoogy / AAUR	03015153788 9295015	masher dea 74hro. cm	R Langum,
21	Sarperosth	Chief (cuti) pg	DAVIL		hri
22	Breezen Fating	RONATOK	- 20-		R
23	Safia Rafiz	En. Maisilis ADB	0333 - 2154462	Sshafing. con Sulfay Q	A to
24	Ozaki Jospihiu	J2(1)	0338-573 -1845	ozalor y shine	h
25	Iman Ahned	JZCA		hrad land . PT Qjila. je.jp	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26	Mir. M. Muazam	PPIB, Q. Mena	0300425867 U	millonge helinest	

Stalabelder Consultations on Environmental Accordment & Cumulative and Induced Impacts of DHD Islamabad 3 October 2013

	_					
	S.No.	Name	Designation and Organisation	Phone No.	Email	Signature
	27	Hamid Marsont	Chief Env pates	0312-524865	morriatora yahoricar	b
	28	Ferdhere Mozhi	Crocel SP LAZR WAPP	03.75 439777 <i>1</i> 16	fortangen egnail.e	3.62
-	2Ý	Dy m. Bashi Un	DGEPA KAPK		dimbk 63 G. yalm)e-i
	30	Ahsen Ali Shah	Aria ?: m &E Specielint	0321 8621432	absanler for Inal ion	Anti
	31	Raheel Mustafa	Assti: Agronomist		Vmustaf 2003 @ yelov, Com	Ctoy.
	32	Alban Ali Khatigu	LARC-WAPON Env. Specialiti	1	Icheliyen70Q I helima'l.com	Ar 32
	33	Muhan ad Wasson	PEON: Conduite 907: Balaciala	03337 7808780	wassen gli @ gmail. Com	X
-	34	Poind Khen	Ehr. Special 87	089 2090188	fielins@ worldburk.esg	5 1.15
	35	BYZAL ALI QUEES GH	VPO/UNDP	0321-5177774	bilal guerti Quipp	
-	36	Ima Dumai	PD. 100 SAMUL	030183866	Por In Day Guid Chi	æ

Islamabad, 2 October 2012

JUNCIN	older Consultations on Environmental Asso				d, 2 October 2012
S.No.	Name	Designation and Organisation	Phone No.	Email	Signature
37	MUNIE Ahmeel	Assistantin Pronu	038378011	pp. 100 Iam Cult	\wedge / \sim
38	Ather Haven	Emernun. (E(DSi)	0321 51362	12 awanated	Mot nil -len De
39	DR. QAZI TALLAT M. SIDDIQUI	$D_{EA}(C)$	033-5254/70	grazitus Cl	- Tola
40	Himoyal ullah Ichan	Sp. Secse tary	0300 19/19	3	
41	Dr. Nadeem Anjad	Member(NRD) PARC		egnail.cm	A
42	DARAHENL.A. SIDDIRH	WAPDA		gnlipogni	l.c.
43	Masin Majert.	DPD 100 Drun .	0301-)77266	nosive dp Ognil	, m/.
44	Nougils Sekanclari		૦ રાષ ર દિવાય છે.	Nash-behsudi Dhotmail.com	Nargils
45	Uni.E. Kulegom Duna Zukowi	Director Duag foundation	03212003309	dura Quball @ gmail . com	and i
46	Nacem Ashrob Keja	Duesta Biodivelsity	0337-5201880	noamoshlefe.	# Stere

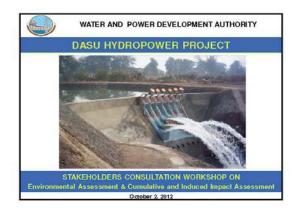
Islamabad, 2 October 2012

Islamabad, 2 October 2012

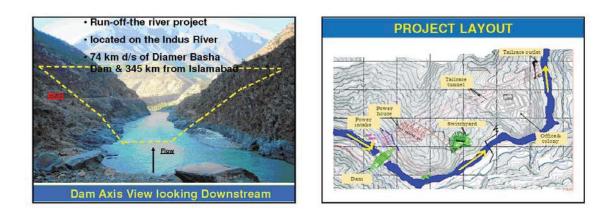
S.No.	Name	Designation and Organisation	Phone No.	Email	Signature
47	Dri Shahzad Jehangri	M/o climale Change	9245566	jehangri 2000	i C
48	Lullflager H. Shih.	XEN-SWTHP WAPDA Rypindi	057-4414623	Sayyed 474 CGMuil. Con.	NA.
49	IRSHAD ANMED JOOMR	Hehaeidrynt DHL	6333-436698	g Reince Survivol	- And
Śo	bi-Fozel Dod Kekon,	D.S. Archarely	051/9252516		When
Śī	Tahir Sace?	AI)	- 10-		High
52	Haj; M. Fahoog	РД Дари НР			Ō.
53	Mr. Hesnain Afzal	GIM Dasu HP			Homan
54	Tabbathum Khushid Ahmad	Dy, Dilichr WAPDA		abassunkh@ykhoo.Com	Tel and the
ſś	Talka	AKt. Dikector WAPDA		suddayui tj Cymowlcon	Migrous
í,	Motohiko 11Jima	РМ ДНР			Liju

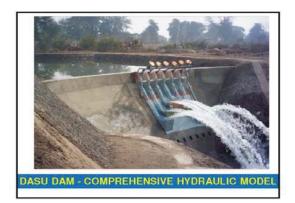
Stakeholder Consultations on Environmental Assessment & Cumulative and Induced Impacts of DHP

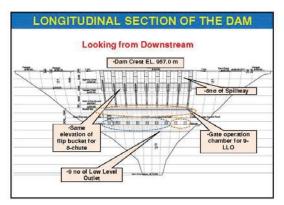
\$.No.	Name	Designation and Organisaton	Phone No.	Email	Signature
57	Zia-ul-Hassan	DPM DHP			Im
śŝ	Dh.M. Zaman	Tean Leadth Social & Env.			Ma
59	Dv. venbata Nubala	DHP		lentata 9 englavontrin	WINDW
60	Malcolin Winsby	⊅ <i>H</i> ₽		mwinsby@gmail.com	Milwity
61	Dr. william Gee Spe	DHP			NK X
62	Dr. Allah Bahsh Sc-f:	DHl	0306468853		Maj
63	Zorfar Jubal ch	DHP	0300.9460132	zic 42 @ mAn, con	2 - Intertainty
64	Mag/sood Ahmad	ЭнР	0300/0324 8424754	amaksordife	
65	Mudaxiah Harban	Jh. Envr. DHP	6333- 9913488	engemudassolo gmail. Co-	Anderser Anderser
66	Samia Raouf	DHP	0321525 7080'	Samia part Chotmeilion	SANL.

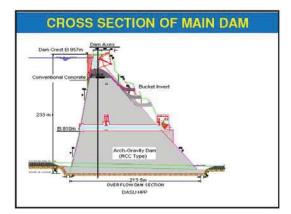

Islamabad, 2 October 2012

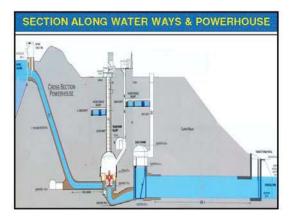
Stakeholder Consultations on Environmental Assessment & Cumulative and Induced Impacts of DHP


Islamabad, 2 October 2012


S.No.	Name	Designation and Organisation	Phone No.	Email	Signature
67	9 Afat Johnies	DHP	0300 - 5308652		[LA
69	Rom Korshof Sheikh	Tomes trial Ecologist (Jut) DITC	0300 8454860		f-Myru
69	FAUSA D CI, UMANDI	EPA Quetta	0336 5301160		wff.
70	Maria khan Ch.	RA CIIT	0332 5109705		deriken-
Ŧ!	AlwedKanal	Manches Clanning & DRP), NDMA	921 5412 0300-52789	marvQudue. pi 1] 2fmenginee gu	
872	ALUA RAMANOM	Angli Anglig	6 0 X00 Solit	<u>}</u> }	Juch
73	saigulah Awan	Dy. Di Bue-EPA	933-552398	saisallahol 7 hetmik.com	T


Annex – 12.9 COPIES OF POWER POINTS AND DISCUSSION POINT





	Stage I (Pr	Stage I (Pre-Basha)		(Post- ha)
	Phase-I	Phase-II	Phase-III	Phase-
Works	Full dam & Three Turbines	Three Turbines	Three Turbines	Three Turbine S
Cumulative Installed Capacity MW	1,080	2,160	3,240	4,320
Generation GWh under each Phase	7,500	4,000	3,500	3,000
Dasu Hydropower Cost (USS million)	3,000	1,000	900	700
Transmission Line Cost (US\$ million)	350		250	
Total Cost (US\$ million)	3,350	1,000	1,150	700

SALIENT FEATURES (FULL PROJECT)

Useable Storage Capacity Main D m Type Max. Height Crest Length (curved) Type Max. Design Capacity el Outlets

Low Le Nos. Discharge Capacity

Discharge Capacity Power Generation Installed Capacity Generating Unit Capacity Powerhouse location Annual Energy Post-Basha Annual Energy Post-Basha Design Discharge Design Head

0.67 MAF Roller Compacted Concrete (Gravity) 242 m 570 m

Fronțal, overflow, gațed 36,800 m²/s

9 Nos. 10,800 m²/s

10,evc 4320 MW 12, Francis turbines 360 MW Underground, left bank of Indus River 13,300GWh 15,440GWh

DASU HYDROPOWER CONSULTANTS

The Joint Venture consists of the Following Firms;

- Nippon Koei Co., Ltd. (NK Japan) (Lead Firm)
- Dolsar Engineering Ltd. (Dolsar, Turkey)

In Association With:

- · DMC, Pakistan
- . NDC, Pakistan
- · PES, Pakistan

I.	Assignment – A:	Preparation of Detailed Engineering Design of Complete Project and Tender Documents and Tendering & Contracting for Stage-I
11.	Assignment – B1:	Construction Design, Contract Management & Construction

SCOPE OF CONSULTANCY SERVICES

Supervision for Stage-I, Tender Document and Tendering & Contracting for Stage-II Construction Design, Contract Management & Construction Supervision for Stage-II, Tender Document and Tendering & Contracting for Stage-III III. Assignment - B2:

FINANCING OF CONSULTANCY CONTRACT

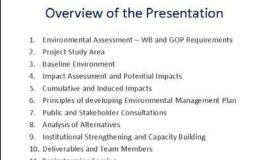
I. Assignment – A: World Bank Water Sector Capacity Building and Advisory Services Project (WCAP)

II. Assignment - B1 & B2: Yet to be decided

CONTRACTRUAL SUMMARY

- Consultancy Services Contract Agreement has been initialed on August 18, 2011
- Final Consultancy Services Agreement has been signed on September 19, 2011
 Commencement and Effective Date of Contract is September 19, 2011
- Completion Date of Assignment A is February 18, 2014
- Completion Date of Assignment Bl is February 18, 2019
- Completion Date of Assignment B2 is February 18, 2022

DELIVERABLE TARGETS ASSIGNMENT-A

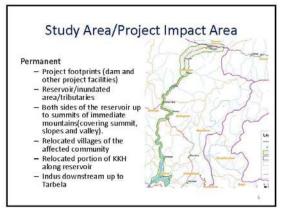

- Review of Feasibility Study and Optimized Stage Development (Inception Report) on November 18, 2011
- Social & Resettlement Management Plan and Environmental Management Action Plan November 30, 2012
- Detailed Engineering Design and Tender Documents March 18, 2013
- Tendering and Contracting February 18, 2014

DELIVERABLE TARGETS ASSIGNMENT-B1&2

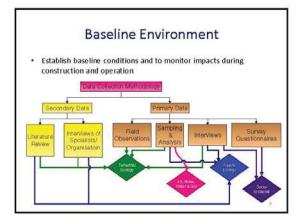
- Commercial Operation of Phase 1 on February 2019
- Commercial Operation of Phase 2 on February 2022
- Operation and Maintenance Manual Phase-1 February, 2019
- Operation and Maintenance Manual Phase-1 February, 2022

11. Brainstorming Session

Environmental Assessment

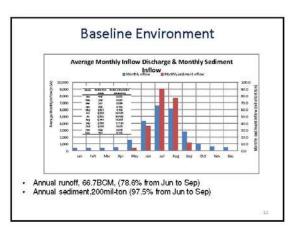

- The World Bank requires environmental assessment (EA) of projects proposed for Bank financing to help ensure that they are <u>environmentally sound and sustainable</u>.
- According to the Bank, Environmental Assessment evaluates a project's potential environmental risks and impacts in its area of influence;
 - examines project alternatives;
 - identifies ways of
 - improving project selection, siting, planning, design, and
 implementation by preventing, minimizing, mitigating, or
 compensating for adverse environmental impacts and
 enhancing positive impacts; and
 - includes the process of mitigating and managing adverse environmental impacts throughout project implementation.


WB Policies Applicable to Dasu Project


Operational I	Policy/Bank Procedures	Triggered	Remarks
OP/BP 4.01	Environmental Assessment	Yes	Category A
OP/BP 4.04	Natural Habitats	Yes	Reservoir; Barrier Effect by Dam
OP 4.11	Physical Cultural Resources	Yes	Rock Carvings
OP/BP 4.12	Involuntary Resettlement	Yes	Land acquisition and Resettlement
OP 4.10	Indigenous People	No	
OP/BP 4.36	Forests	No	21,000 trees
OP/BP 4.37	Safety of Dams	Yes	
OP/BP 7.50	Projects in International Waterways	Yes	Indus Water Treaty
OF/BP 7.60	Projects in Disputed Areas	No	

GOP Policies & International Best Practices

- PAK-EPA, IEE and EIA Regulations, 2000 - Dasu will be a Schedule II Project
- Environmental Protection Act, 1997
- National Environmental Quality Standards (NEQS), 2000
- Guidelines for Public Consultation, 1997
- International agreements [CBD (Convention on Biological Diversity); CITES, CMS, WHC and Ramsar (wetlands)]
- World Commission on Dams
- WB Group EHS Guidelines
- Hydropower Sustainability Assessment Protocol



Baseline Environment

- Physical Environment
- Topography: narrow gorges; steep slopes
- Climate (Warm Summers: 40°C, Cold Winters: -2 °C; Monsoon Shadow Area; Snow Cover in winter
- Geology and Geomorphology (Relatively young mountains; seismically active; unstable geomorphology)
- Water Resources (mostly snow/glacier melt; risk of floods through intense rainfalls, landslides and GLOFs)

Baseline Environment

- > Terrestrial Ecology
- Flora: Variety of trees (585 species): grass, shrubs; tree cover increases with elevation;
 Uses non timber (NTFPs) and timber : 3796 fodder; 14% fuel; 10% medicinal; 4% fruits; 2% timber
- Animal Ecology (Population are not large but there is rich species diversity – e.g.)
 birds (199 birds – 62% resident; 24% summer breeder& wintering; 14% passage migrants),
 - mammals (31 reported 10 recorded)
 Markhor, Musk deer, black bear
 reptiles (15),
 - reptiles (15),
 amphibians (3),
 - Indus flyway migratory water fowl
- Community-based conservation hunting (trophy hunting) near Kaiga

Baseline Environment

Aquatic Ecology

- River/tributaries are characterized by relatively steep gradients and substrate sizes, fast-flowing, turbulent, welloxygenated and turbid water and biota adapted to those conditions
- Biota (knowledge base poor; native fish -snow carps, mountain loaches, sisorid catfish; otters; fish-eating birds such as cormorants, kingfishers)
 Resource Use (Fish capture for cash
- Resource Use (Fish capture for cash and household consumption; simple methods; no formal fishing community; poorly regulated and documented; unsustainable practices)

Baseline Environment

> Environmental Quality

- Two seasons High flow season (July 2012) and Low flow season (November 2012)- covering all project impact area
- Survey by SUPARCO
- Water quality (upstream, downstream, tributaries)
- Air quality (along KKH, proposed construction areas, quarry sites, sensitive receptors)

> Soil Quality for Mercury

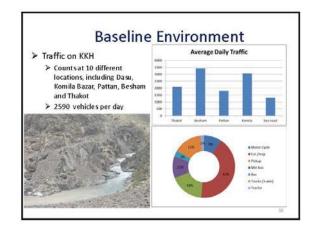
Baseline Environment

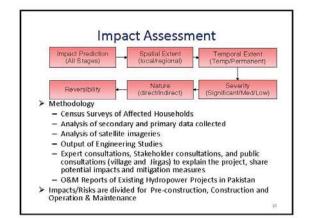
Social and Economic Profile

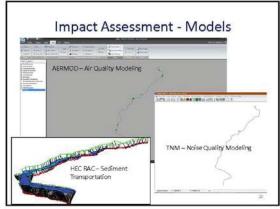
- Kohistan is "tribal" region viewed as "unique" culturally and socially within Pakistan.
- The area is remote and communities are divided by tribal affiliation and have inter-ethnic rivalries.
- People affected largely live on terrace cultivation and livestock.
- Seasonal migration up and down the mountains common
- · Baseline surveys of 330 households

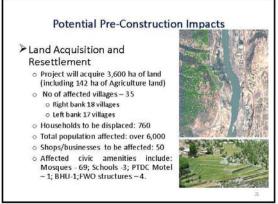
Baseline Environment

- > Cultural Resources
- 400 year old mosques with wooden structures at Seo and Seer Gayal



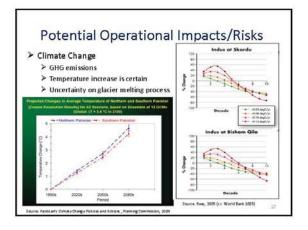



- Rock Carvings at Shatial (1st Century AD to 8th Century AD)
- Inscribed with Buddhist religious motifs, animals, hunting scenes

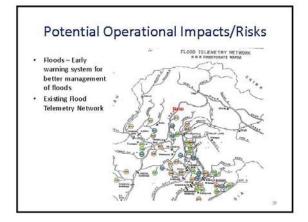

 Pilgrims, traders and missionaries – left their records in the shape of inscriptions and carvings

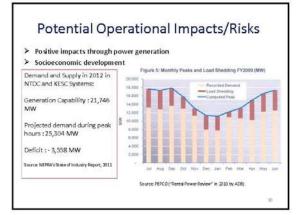
 Privately owned, not protected, subjected to vandalism

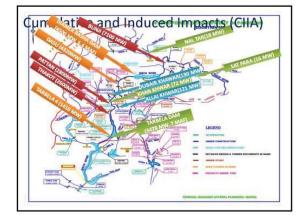





Potential Construction Impacts/Risks


- Air, Dust, noise and water pollution





Scope of the Cumulative and Induced Impact Assessment (CIIA)

- To characterize and understand the potential cumulative impacts arising from the construction and operation of all (in sequence and in total) the current and proposed projects on the Indus river over the next 10 years
- Assess the incremental environmental/ecological impacts of hydropower and storage development projects in Indus on
 - Aquatic fauna and flora
 - · Biodiversity of the riverine ecosystem
 - · Water availability for agriculture and other uses
- Population displacement, social/resettlement aspects
 Provide guidance on integrated planning and development
 - for addressing cumulative impacts

Scope & Methodology of CIIA

Spatial coverage:

- > Tarbela Catchment within Pakistan (Upper Indus Basin)
- Temporal coverage (Until 2022)
 - Existing: 3584 MW & 7 MAF
 - > Under Construction: 251 MW
- In Next 10 Years: 8070 MW & 8 MAF Methodology
- · Wiethodology
- Secondary data (feasibility studies, detailed engineering reports, evaluation reports)
- > Stakeholder consultations
- Two scenarios

development)

- 'Business as usual' development pattern
 'Best Practices' with a policy that supports environmentally sensitive
 - y that supports envir

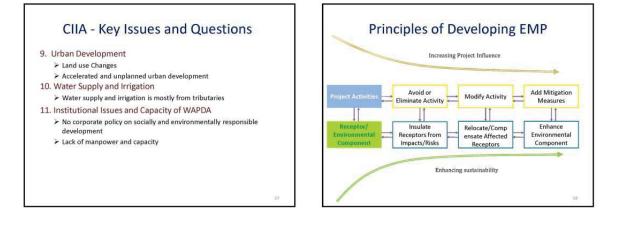
CIIA - Key Issues and Questions

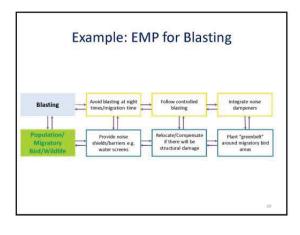
- 1. River Hydrology, Water Use and Quality
 - Changes in flow patterns: High flows in winter and low flows in summer
 - 22% storage of annual flow
 - \succ Degradation of downstream due to release of sediment free water \succ Changes in water quality (suspended solids, temperature, dissolved
- oxygen) 2. Power Transmission and Industry
 - 2 existing transmission lines (132 KV and 220 KV) along Indus valley on d/s of Pattan
 - > 500 KV transmission line for Dasu along Indus
 - > 765 KV transmission line for Basha probably along Indus

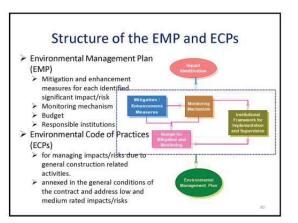
CIIA - Key Issues and Questions

3. Fisheries

- Conversion of 58% (290 km of 502 km) of riverine ecosystem to lacustrine ecosystem.
- > Potential effect on aquatic habitat due to submergence on u/s and altered water quality d/s
- Potential effect on fish movement patterns between tributaries and the River due to high flows in winter. This will also affect the availability of fish for local consumption.
- Potential effect on reservoir fisheries of Tarbela due daily storage-release cycle Dasu during low flow season
- > Additional reservoir fisheries development
- 4. Forestry and Biodiversity
- Erosion of riparian areas
- > Intrusion in to natural habitat and exploitation of flora and fauna
- Bird collisions and electrocution
- \succ Artificial staging grounds for migratory birds


CIIA - Key Issues and Questions


5. Social Issues


- 135,000 peoples relocation (96,000 were from Tarbela)
- 45,000 ha of land acquisition (27,000 was from Tarbela)
- 10,000 immigrant construction workers per day

6. Agriculture and Livelihood

- Loss of 1200 ha of agriculture land due Basha and Dasu
 - Life of Tarbela will be increased by 50 years
- 7. Transport
- 4 fold increase in heavy vehicle traffic on KKH
- 8. Vulnerability to Flooding, Flood Management Aspects
- Flood Attenuation
- Requirement of Early warning system

Environmental Code of Practices ECP 10: Air Quality Management -

- ECP 1: Waste Management ECP 2: Fuels and Hazardous Goods Management
- > ECP 3: Water Resources
- Management
- ECP 4: Drainage Management
 ECP 5: Soil Quality Management
- > ECP 6: Erosion and Sediment Control
- ECP 7: Top Soil Management
- **Operation and Restoration**

ECP 16: Construction Camp Management ECP 8: Topography and Landscaping ECP 17: Cultural and Religious ECP 9: Borrow Areas Development, Issues > ECP 18: Workers Health and Safety

ECP 11: Noise and Vibration

ECP 14: Protection of Fisheries > ECP 15: Road Transport and Road

Traffic Management

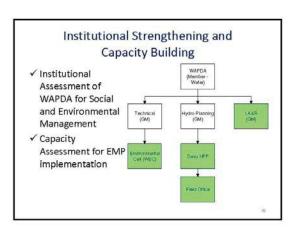
Management ECP 12: Protection of Flora
 ECP 13: Protection of Fauna

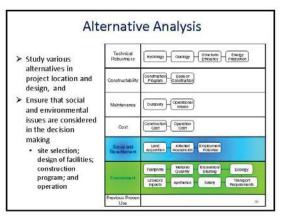
> ECP 19 – Decommissioning of contractors and Restoration of **Construction Areas**

Some Mitigation Measures - Adaptation in Project Planning and Design

- · Finalisation of Dam site location to minimize social and environmental impacts
- Relocation of KKH/bridges to higher elevations
- . Design for extreme seismic events (ICOLD, 2010)
- Basic Design Flood for extreme flood events. .
- Landslide protection in the reservoir area
- . Climate change adaptation
- Seismic and Flood Monitoring
- Operation as true run off river •
- **Environmental Flows** •
- Contractors with ISO 14001 EMS; SA 8000; OHSAS 18000 & WB/ADB experience.

Some Mitigation Measures -Pre Construction Impacts


- Land Acquisition and Resettlement
 - Infrastructure at the resettlement areas
 - Training of locals for future employment in project
- Vegetation Loss
- Development of Greenbelts and Conservancies Physical Cultural Resources
 - Disassembling/dismantling and Reassembling/reerection of 400 year old mosque
 - Protection of Graveyards through mud plastering
 - Procurement and protection of Shatihal rock carvings


Some Mitigation Measures -**Construction Impacts**

- Traffic along KKH
 - Traffic units along KKH and Controlled traffic flow
 - Supporting local traffic infrastructure/authorities

Construction Related Impacts

- Strict implementation of EMP and ECPs
- Environmental and Health & Safety Specialists in team - A Social and Environmental Unit in PD/PMU at the Project
- Internal and External Auditing
- Grievances Redress Mechanism
- Awareness and education on environmental protection
- Restoration of Construction Areas

Community/Stakeholder Consultations WB OP4.01 requires 2 rounds of consultations.

3 Jirga meetings and 34 village level consultation meetings

- Peshawar - Lahore
- Karachi Islamabad

Community/Stakeholder Consultations

Summary of Community Consultations

- Better rates for land and structures Employment in project activities -
- Equal opportunity for both banks
- Self managed resettlement by communities - similar facilities in the new areas
- Protection of Graves with mud plastering
- 15 point charter of demands
- Pevelopment of Kohistan District (roads, electricity, schools, hospital, colleges)

Community/Stakeholder Consultations

Peshawar Consultations (Sep 10, 2012) -**41** participants

- Development of agricultural terraces
- Documentation and Protection of Physical Cultural Resources
- Adequacy of health facilities to cope with demand
- Protection of aquatic and terrestrial flora and fauna - requirement of environmental flows
- Traffic on KKH
- Impacts during demobilisation
- Environmental Unit at Project Site for implementation of EMPs

Community/Stakeholder Consultations

Lahore Consultations (Sep 17, 2012) -88 participants

- Impacts on Rabi crops due to storage of water
- · Low flow season and its impact on aquatic life
- Planning for Geohazards land slides and earth quakes.
- · Early warning system for floods
- Security issues in the project area
- Protection of heritage sites Impact on the community and their livelihood due to relocation

Community/Stakeholder Consultations

Lahore Consultations (Sep 17, 2012) -**88** participants

- Support and augment local
- community based conservancies
- Traffic on KKH Simultaneous construction of Basha and Bunji
- · Health and Safety of workers and host community
- Impact of Transmission Lines along Indus valley on birds migration and public health due to EM waves

Community/Stakeholder Consultations

Karachi Consultations (Sep 24, 2012) -**37 participants**

- Monitoring of impacts on Lower Indus Basin
- Impact on migratory birds and international bird areas (IBA)
- Protection of Indus river ecology Geological hazards: seismic activity
- and faults Climate change impacts: GLOFs,
- erosion and sedimentation
- Habitat management plan for endangered species

Deliverables - EMAP

Environmental Management Action Plan (Nov/Dec-2012)

- > Vol. 1 Executive Summary (Summaries of Vol 1 to Vol 8)
- > Vol. 2 Environmental Impact Assessment
- > Vol. 3 Terrestrial Ecology
- > Vol. 4 Aquatic Ecology
- > Vol. 5 Physical and Cultural Resources
- > Vol. 6 Environmental Baseline Quality
- > Vol. 7 Cumulative Impact Assessment
- > Vol. 8 Implementation Management Plan and Cost Estimates

Deliverables - SRMP

Social and Resettlement Management Plan (Nov 2012)

- Vol. 1 Executive Summary (of all SRMP documents)
- > Vol. 2 Socioeconomic Analysis and Profiles of the Project Area
- > Vol. 3 Public Engagement and Mobilization Plan
- > Vol. 4 Resettlement Framework
- > Vol. 5 Resettlement Action Plan
- > Vol. 6 Grievances Redress Plan
- Vol. 7 Gender Action Plan
- > Vol. 8 Public Health Action plan
- > Vol. 9 Communications Plan
- Vol. 10 Management Plan for In-Migrants and Construction Workers
- Vol. 11 Costs and Budgetary Plan
- Vol. 12 SRMP Implementation Management Plan

Overview of Deliverables - EIA

- Comprehensive Report covering all aspects of Environmental Assessment. The Contents of EIA report are Introduction 1
 - Legal and administrative framework
 - 3. Description of Project Description of Baseline Environment
 - 4.
 - 5. 6. 7. Project Alternatives Relevant Issues (Climate Change, Risk of Flooding)
 - Public Consultations and Information Disclosure
 - 8. Potential Environmental Impacts and their mitigation
 - Potential Social Impacts and their mitigation
 Cumulative and Induced Impacts

 - Environmental Management Plan
 Conclusions and Recommendations

Team Members (International)

No.	Name	Position	Nationality
1	Dr. Mohammad Zaman	Team Leader (Social and Environment)	Canadian
2	Dr. Venkata Nukala	Environment Specialist	Canadian
3	Malcolm Winsby	Aquatic Ecologist & CIIA Team Leader	Canadian
4	Dr. Kashif Sheik	Terrestrial Ecologist	Canadian
5	Dr. Masud Karim	Environmental Specialist	Canadian
6	Dr. Haimin Wang	Resettlement Specialist	Chinese
7	Sunil Goonetilleke	Social Specialist	Australian
8	Bernahard Eder	Public Health Specialist	Austrian
9	Dr. Iffat Idris	Social Analyst	British

Team Members (National)

No.	Name	Position
1	Zafar Iqbal Chaudry	Environment Specialist
2	Dr. William George	Fisheries Expert
3	Prof. Tahir Omer	Aquatic Ecologist
4	Dr. Sajid Nadeem	Terrestrial Ecologist
5	Dr. Rehmatulla Qureshi	Vegetation Expert
6	Prof. Ihsan H. Nadiem	PCR Specialist (Reviewer)
7	Mohd. Saleem	Consultation & Participation Specialist
8	Samia Raoof	Gender Specialist
9	Mudassar Hassan	Environmental Specialist
10	Irshad Ahmed Soomro	PCR Specialist
11	Dr. Alla Bakshsh Sufi	CIIA Specialist

Panel of Experts (Social and Environment) and Independent Reviewers

No.	Name	Position
1	Prof. Shi Gouqing	Panel of Expert
2	Dr. Eric Jensen	Panel of Expert
3	Mr. R. Koopmans	Independent Reviewer
4	Mr. Omar Khalid	Independent Reviewer

Brain Storming Session

- Objective: To involve the stakeholders in - identifying potential Cumulative and Induced
- Environmental impacts, mitigation measures, and project planning and design
- · Participants will be divided into groups
- 2 topics will be given to each group for discussion
- Group wise discussion for 15 to 20 minutes
- Presentation from each group (5 minutes for each group)

Brain Storming Session

Discussion Point 1

59

Review the potential issues that could result from <u>cumulative</u> <u>and induced impacts</u> from the existing and future hydropower and storage projects in Tarbela Catchment as described in the presentation. Please discuss to

- Identify potential impacts and concerns of the cumulative development on the key issues presented;
- identify areas where planning and development interventions are required to deal with identified cumulative impacts
- Provide guidance on integrated planning and development for addressing cumulative impacts
- recommendations to the consultant team to incorporate in project planning and design

Brain Storming Session

Discussion Point 2

Please review the potential issues/impacts that could arise from the pre-construction, construction and O&M activities described in the presentation. Please discuss

- i. if other potential impacts should be addressed; ii. possible mitigation and enhancement measures for all the se impacts;
- iii. adequacy of the boundaries of the project impact area;
- iv. adequacy of proposed methodology for impact assessment; and
- v. recommendations to the consultant team to incorporate in project planning and design.

Thank You

• For comments and suggestions:

Mr. Haji Muhammad Farooq Ahmad Dr. Venkata Nukala, R.Geo. Project Director, Dasu Hydropower Project WAPDA Sunny View, Lahore. Phone: 042 99202676 Fax: 0 42 99202667 Email: dasuhpp@yahoo.com

Environmental Specialist Dasu Hydropower Consultants 70-B/1, Gulberg III, Lahore Phone: 042 3587 3659 Fax: 042 3571 3026 Email: venkata@eng-consult.com

DASU HYDROPOWER PROJECT Stakeholders Consultations Workshop on Environmental Assessment & Cumulative and Induced Impact Assessment

Discussion Point 1

Review the potential issues that could result from <u>cumulative and</u> <u>induced impacts</u> from the existing and future hydropower and storage projects in Indus River as described in the presentation (also summarized below).

Please discuss and provide recommendations on the following

Торіс	Comments/Output
1. Additional potential impacts/concerns of cumulative development	
2. Key topics/areas where planning/development interventions are required to deal with identified cumulative impacts	
3. Guidance on integrated planning/development for addressing cumulative impacts	
4. Guidance to consultant team and WAPDA to incorporate in Hydropower project planning and design	
5. Key sector documents: planning/development/strategic; environmental assessments (strategic, sector, project)	

Key issues for cumulative and induced impact assessment

1.	River Hydrology
----	------------------------

- 2. Power Transmission & Industry
- 3. Fisheries
- 4. Forestry And Bio-Diversity
- 5. Social Issues
- 6. Agriculture And Livelihood
- 7. Transport
- 8. Floods
- 9. Urban Development
- 10. Water Supply And Irrigation
- 11. Institutional Issues and Capacity of WAPDA

Discussion Point 2

Review the potential issues/impacts that could arise from the <u>pre-</u> <u>construction, Construction and O&M activities</u> described in the presentation (Pages 11-15). Please discuss and provide recommendations on

Торіс	Comments/Output
1. Other potential impacts should be addressed;	
2. Possible mitigation and enhancement measures for all these impacts;	
3. Adequacy of the boundaries of the project impact area;	
4. Adequacy of proposed methodology for impact assessment; and	
5. Recommendations to the consultant team to incorporate in project planning and design	

Annex – 13.1

HYDROPOWER SUSTAINABILITY ASSESSMENT PROTOCOLS – THE CASE OF DHP

Hydropower Sustainability Assessment Protocols¹ have been used to evaluate the social and environmental assessment carried out in the Dasu Hydropower Project. The results of the self-assessment tests of all 12 social and environmental protocols conducted by the Social and Environment Team are presented in Figure 1 in the form of sustainability profile and mapping. The scoring level ranges from 1 to 5 (5 being highest), while 3 is basic good practice, 4 is excellent and 5 is proven best practice with no room for improvement. Of the 12 protocols tested, 10 scored 4 (i.e., excellent) while 2 protocols received 3, which meets basic good practices. The rationale for the scoring for each protocol is given in the following tables (Table 1 to Table 12). The results of the test thus reflect high quality project preparatory works against global benchmark. The Dasu Hydropower safeguard "packages" are, therefore, not only comprehensive but also demonstrate international "good practices." The Project safeguard measures have enhanced national standards and shall hopefully remain as an example and "model" to draw on by future projects in Pakistan and globally.

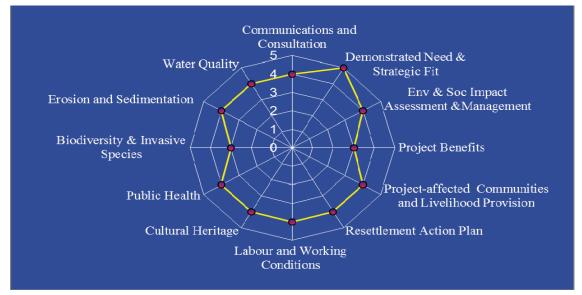


Figure 1: Hydropower Sustainability Assessment of DHP

¹ International Hydropower Association, 2010. Hydropower Sustainability Assessment Protocol

Protocol	Title		Assessment	DHP – Evidence and	Score
Protocol	litte	Scores	Criteria	Justification	Score
		5	Suitable, adequate, and effective assessment with no significant opportunities for improvement	Two volumes of SRMP (Vol. 3 PCPP, and Vol. 11:- CP deal with consultations, communications	
	Communications and consultation	4	Suitable, adequate and effective assessment with only a few minor gaps	and disclosures Demonstrated evidence of community engagement and extensive consultation with stakeholders and communication	4
P-1	ations and	3	Suitable, adequate and effective assessment with no significant gaps	strategies and plans at implementation Broad-based community support to the Project .Good practices	4
	Communic	2	A significant gap in assessment processes relative to basic good practice (Level 3)	such as community participation in many committees (i.e., VC, GRC, Leading Group) for local decision- making, development and local capacity building	
		1	Significant gaps in assessment processes relative to basic good practice (level 3)	Full compliance with WB and international "good practices"	

Protocol	Title	Title		Assessment DHP – Evidence	DHP – Evidence and	Score
Protocol		Scores	Criteria	Justification	Score	
		5	Suitable, adequate, and effective assessment with no significant opportunities for improvement	Assessment Analysis of Alternatives' have been carried out as part of EIA demonstrating the need for energy services Compared various feasible	5	
P-3		4	Suitable, adequate and effective assessment with only a few minor gaps	options for energy development (thermal and renewable) in terms of environmental and economic implications		
Р-3	Strategic Fit	3	Suitable, adequate and effective assessment with no significant gaps	It was demonstrated in the analysis, DHP is low cost and clean energy source with limited social and environmental impacts due to high power density (power generation per unit area).		
	Demonstrated Need & Strategic Fit	2	A significant gap in assessment processes relative to basic good practice (Level 3)	Stakeholder EngagementWAPDA's strategy on Vision2025onhydropowerdevelopmentwaswidely		
	Demonstra		Significant gaps in assessment processes relative to basic good practice (level 3)	publicised and disclosed. Need for justification was disclosed to the various stockholders at the four national workshops conducted at Peshawar		
		1		Out comes In addition to EIA, a report on justification of DHP was prepared by the Project by WAPDA' A stand along section on EIA was presented to confirm that the DHP is one of the priority options to address demonstrated needs.		

Table 2: Protocol 3: Demonstrated Need & Strategic Fit

Ductoral	T:41-	Ass	sessment	DUD Evidence and bustification	8000
Protocol	otocol Title Sco		Criteria DHP – Evidence and Justification		Score
		5	Suitable, adequate, and effective assessment with no significant opportunities for improvement	Assessment A baseline has been established for all social and environmental features for the pre-project condition against which post-project changes can be compared. The social safeguard issues particularly focused on negotiated land compensation approved by the local <i>jirga</i> , communications and disclosures, community participation in local	
	Management	4	Suitable, adequate and effective assessment with only a few minor gaps		4
P-5	& Social Impact Asses ment &	3	Suitable, adequate and effective assessment with no significant gaps	seismicity, sedimentation, GLOFs, and climate change through extensive field studies and consultations, and mainstreaming the impacts in the project planning, design, implementation and operation to avoid any residual impacts Management	
		al & Social Impact As	2	A significant gap in assessment processes relative to basic good practice (Level 3)	management plans and processes have been developed for project implementation and operation with no significant gaps; in addition to key social and environmental issues relating to the hydropower project, plans address construction related waste, noise, air
	Environnementa	1	Significant gaps in assessment processes relative to basic good practice (level 3)		

 Table 3: Protocol 5: Environnemental & Social Impact Asses ment & Management

Out comes
•A set of eight twenty three (23) volumes have been prepared the packaging of the documentation demonstrates the full coverage of impacts in the form of Environmental Management Action Plan (EMAP, 8 volumes) and Social and Resettlement Management Plan (SRMP,
15 volumes).
Compliance
The social and environmental
deliverables are prepared in compliance with GOP and World Bank polices and guidelines

			ect Benefits ssessment		_	
Protocol	Title	Scores	Criteria	DHP - Evidence and Justification	Score	
		5	Plans to anticipate and respond to emerging risks and opportunities, and provision for sustained benefits	Assessments and Opportunities Project wide overview of the impacts, opportunities and benefit sharing analysis within hydropower context Project benefits in terms of good compensation, allowances and other financial support, new resettlement		
		4	All basic good practice elements, but one or more cases exceeded, but a gap in proven best practice	sites with all basic amenities, better public facilities, and livelihood programs Long-term training and skill development program for employment Non-monetary benefit sharing programs in the form of local area		
	Ň	3	Assessment of opportunities, project benefit plans, engagement of stakeholders, and plans to deliver benefits	development with social , and economic infrastructures at project costs Monetary benefit sharing – for example, electricity at reduced rate, royalty sharing with local governments planned Management Livelihood and social management	3	
P-10	Project Benefit	Project Benefits	2	Most relevant elements of basic good practice have been undertaken, (Level 3), but there is one significant gap	plan s have been drawn without any gaps Local area development plan already incorporated as project cost Royalty sharing with the local government requires further policy, legal and institutional arrangements Plans proposed for benefit sharing	
		1	There are significant gaps relative to basic good practice (level 3)	with natural environment Stakeholder Engagement Community level <i>jirga</i> meetings demanded better compensation policies, including a 15-Point Charter of Demands for project benefit sharing with the affected communities Outcomes SRMP Vol. 6 RAP for good compensation, better facilities in resettlement sites, better livelihoods and income; Vol. 13 Benefit Sharing Approaches and Plan for monetary and non-monetary benefit sharing); Environmental Enhancement Fund (EEF) in EMAP Vol. 8 EMP. Enhanced opportunities for affected households and communities for access to new and/or improved public amenities and potential revenue sharing arrangements.		

Table 4: Protocol 10: Project Benefits

Proto			Assessment		
col	Title	Score s	Criteria	DHP – Evidence and Justification	Score
	Communities hoods	5	Suitable, adequate, and effective assessment with no significant opportunities for improvement Suitable, adequate and effective assessment with only a few minor gaps	Vol. 2) and comprehensive impacts (SRMP Vol. 6 RAP) identified and documented Impacts on livelihoods identified thru Income and Livelihood survey In addition to cash assistance, multiple options for livelihood restoration – short and long-term	4
P-13		3	Suitable, adequate and effective assessment with no significant gaps	Livelihood program implementation –roles and responsibilities identified; provisions for financing established Good practices include long-term Social Development Program and Local Area Development Benefit Sharing Programs (SRMP Vol. 13) Monetary and non-	
	Project-affected and Livel	2	A significant gap in assessment processes relative to basic good practice (Level 3)		
		1	Significant gaps in assessment processes relative to basic good practice (level 3)	monetary programs Full compliance with WB safeguards and international standards	

Table 5: Protocol 13: Project-affected Communities and Livelihoods

			Assessment	DUD Evidence and hystification	0
Protocol	Title	Scores	Criteria	DHP – Evidence and Justification	Score
		5	Suitable, adequate, and effective assessment with no significant opportunities for improvement	address and cover all impacts and mitigation, including compensation at current market prices	
	: Plan	4	Suitable, adequate and effective assessment with only a few minor gaps	Multiple options for relocation, including development of community-preferred sites in higher elevation with all basic amenities	4
P-14	Resettlement Plan	3	Suitable, adequate and effective assessment with no significant gaps	New social, economic , educational infrastructures as additional investments for social development	
	Re	2	A significant gap in assessment processes relative to basic good practice (Level 3)	Gender action plan and attention to vulnerable groups Community-wide support for the project and community involvement in implementation activities	
		1	Significant gaps in assessment processes relative to basic good practice (level 3)	Pre-construction activities for social preparedness and readiness Meet all compliance issues, including setting new standards	

		_	sment		Score		
Protocol	Title	Scores	Criteria	DHP - Evidence and Justification	Score		
		5	Suitable , adequat e, and meet all internati onal labor practice s and rights	Assessment of Human Resources Needs Full assessment of human resources and labor management requirements – annually and over time during project construction Analysis of labor requirements and influx of in-migrants and construction workers to project sites Socio-cultural implications of in-migration , health and safety issues and labor rights Management Plans Management plans at project level as well			
	SI	4	All relevant basic good practice underta ken, but one significa nt gap remains	as contractors and consultants, based on laws, guidelines and frameworks Management Plan for safeguarding rights of migrant workers. Good practices include occupational health and safety, training, equal opportunity, and grievances redress mochanisms			
P-16	Labor and Working Conditions	3	Suitable , adequat e and effective assess ment with no significa	Stakeholder Engagement An Occupational Health and Safety (OHS) unit will be established as part of environmental unit of PMU. The OHS Specialist/s will be part of contractor, supervision consultant and PMU staff. Proactive approaches to deal with in- migrants management Recognition of in-migrants and construction			
	Lab	2	nt gaps Most relevant element s of basic good practice (Level 3) with one significa nt gap	awareness for inter-cultural understanding Campaign for awareness about HIV/AIDS and other health issues, and awareness against human trafficking including womer and children Out comes Integrated Labor management plans fo			
		1	There are significa nt gaps relative to basic good practice (Level 3)	to work and opportunities (EMAP Vol. 8 Environmental Management Plan, and SRMP Vol. 9 Management Plan for Construction-related Impacts, and Vol. 3 of Bidding Documents) Compliance with Local and Internal Labor Rights Full compliance with national and international labor rights and practices.			

Table 7: Protocol 16: Labor and Working Conditions

Protocol	Title		Assessment	DHP – Evidence and	Score
FIOLOCOL	Title	Scores	Criteria	Justification	Score
		5	Suitable, adequate, and effective assessment with no significant opportunities for improvement	the project area are identified along with their significance	
		4	Suitable, adequate and effective assessment with only a few minor gaps	selecting the current dam site location Impacts and risk of the project development on the PCRS are	4
		3	Suitable, adequate and effective assessment with no significant gaps	opportunities for enhancement of PCRs and potential for tourism development. Stakeholder Engagement	
	ritage	2	significant gap in ssessment rocesses relative to asic good practice _evel 3)	Plans for protection of graveyards and relocation of	
P-17	Cultural Heritage	1	Significant gaps in assessment processes relative to basic good practice (level 3)	Seer Gayal mosque are prepared in consultation with stakeholders Grievance Redress mechanism will be in place for stakeholders to raise issues and get feedback Stakeholder Support Current location of the dam site is selected with stakeholder support to avoid submergence of impact cultural heritage (Seo mosque) in the Project area. Out comes A Physical Cultural Resources report is prepared with plans to avoid, minimise, mitigate, and compensate negative impacts on cultural heritage arising from project activities. In addition enhancement plans are proposed Shatial rock carvings and Seo mosque, which will be not effected by the project.	

Table 8: Protocol 17: Cultural Heritage

Dreteed	Title		Assessment	DHP – Evidence and	Coord
Protocol		Scores	Criteria	Justification	Score
P-18		5	Suitable, adequate, and effective assessment with no significant opportunities for improvement	Vol. 6 GAP, Vol. 7 PHAP, and Vol. 8 Management Plan for Construction-related Impacts) cover issues related to public health issues. Integrated approach to public health to (i) minimize adverse impacts on health risks (including HIV/AIDS), IEC; and (ii) improved health delivery system in the project area, including in-migrants and host populations. Enhancement, including establishment of health clinics, including capacity building of the existing facilities Financing, implementation and monitoring	
	alth	4	Suitable, adequate and effective assessment with only a few minor gaps		4
	Public Health	3	Suitable, adequate and effective assessment with no significant gaps		
		2	A significant gap in assessment processes relative to basic good practice (Level 3)		
		1	Significant gaps in assessment processes relative to basic good practice (level 3)		

 Table 9: Protocol 18: Public Health

Protocol	Title		Assessment	DHP – Evidence and	Score
		Scores	Criteria	Justification	Score
		5	Suitable, adequate, and effective assessment with no significant opportunities for improvement	Assessment An assessment of terrestrial biodiversity; aquatic biodiversity including passage of aquatic species and loss of connectivity to significant habitat; and risks of invasive species has been undertaken	
		4	Suitable, adequate and effective assessment with only a few minor gaps		
	Species	3	Suitable, adequate and effective assessment with no significant gaps		3
P-19	Biodiversity & Invasive Species	2	A significant gap in assessment processes relative to basic good practice (Level 3)		
	Biodiversit	1	Significant gaps in assessment processes relative to basic good practice (level 3)	management unit respond to emerging risks and opportunities during project implementation Outcomes Two reports – Terrestrial Ecology and Aquatic Ecology are prepared with planning to avoid, minimise, mitigate, and compensate negative biodiversity impacts arising from project activities Plans for reservoir fishery development and enhancement for community conservation at Kaigah is proposed	

Table 10: Protocol 19: Biodiversity & Invasive Species

Protocol	Title	Assessment DHP -	DHP – Evidence and	Score	
11010001	nue	Scores	Criteria	Justification	Score
		5	Suitable, adequate, and effective assessment with no significant opportunities for improvement	Assessment Erosion and sedimentation a key issues for the Project at have been thoroughly analyst with the state of art technology assess their impact on the project and to understand the sedimect load and dynamics Potential landslide prone are	
		4	Suitable, adequate and effective assessment with only a few minor gaps	load and dynamics Potential landslide prone areas are identified and their impacts are assessed	
P-20	entation	3	Suitable, adequate and effective assessment with no significant gaps	for evaluation of geotechnical issues related with identified landslides and catchment	4
	on and Sedim	Erosion and Sedimentation	2	A significant gap in assessment processes relative to basic good practice (Level 3)	management for reduction of erosion and sedimentation. Management Sediment flushing is designed to optimise the power generation LLOs and flushing tunnels are
	Erosic	1	Significant gaps in assessment processes relative to basic good practice (level 3)	designed to manage the sediment load Potential landslides along KKH are considered in the engineering designs and retaining walls are recommended Reservoir landslide monitoring plan is prepared Outcomes A standalone report on Reservoir Operation and Sediment Management is prepared A reservoir landslide management plan is prepared	

 Table 11: Protocol -20: Erosion and Sedimentation

Protocol	Title		Assessment	DHP – Evidence and	Score
Protocol	Title	Scores	Criteria	Justification	Score
		5	Suitable, adequate, and effective assessment with no significant opportunities for improvement	Assessment Assessment on water qualit during project construction an operation is carried out Assessment of water qualit impacts on aquatic ecology hav	
		4	Suitable, adequate and effective assessment with only a few minor gaps	been carried out Water quality during high flow and low flow season in Indus and its tributaries from Basha dam site to Tarbela dam site is established to	
		3	Suitable, adequate and effective assessment with no significant gaps	monitor the future impacts Management Water quality management Plans and processes to address identified water quality incurse	
		2	A significant gap in assessment processes relative to basic good practice (Level 3)	identified water quality issues have been developed for project implementation and operation Opportunities for improvement of water quality, such as waste water treatment facilities for Dasu town	4
P-21	Water Quality	1	Significant gaps in assessment processes relative to basic good practice (level 3)	 are considered. Outcomes A series of following EMP subplans are recommended for protection of water quality EMP Sub-Plan 1: Construction Management EMP Sub-Plan 2: Operational Management EMP Sub-Plan 3: Physiography and Geology EMP Sub-Plan 4: Hydrology & Surface Water Management EMP Sub-Plan 7: Noise and Vibration Management EMP Sub-Plan 8: Waste Management EMP Sub-Plan 9: Hazardous Substances Management EMP Sub-Plan 11: Aquatic Ecology Management 	

Table 12: Protocol 21: Water Quality